
Sharing of knowledge and preferences among
imperfect Bayesian decision makers

Miroslav Kárný, Tatiana V.Guy
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Abstract

Bayesian decision theory provides a strong theoretical basis for a single-
participant decision making under uncertainty, that can be extended to multi-
participant problems. However Bayesian decision theory assumes unlimited abil-
ities of a participant to probabilistically model participant’s environment and to
optimise decision-making strategy.
The paper proposes a methodology for sharing of knowledge and strategies among
participants, that helps to overcome the non-realistic assumption on participants’
unlimited abilities.

1 Introduction

Dynamic decision making (DM) with uncertain information and limited resources is a dynamic in-
teraction of a participant (decision maker) with its environment (part of the World). During the
interaction the participant selects among available actions while aiming to reach its DM goals.
These goals implicitly express the participant’s preferences with respect to the future behavior of
the closed loop formed of participant and the environment. The knowledge available to the partici-
pant comprise: the knowledge gained from the environment in response to the participants actions
(observations); the knowledge associated with the participant’s decisions (DM strategy) and knowl-
edge considered by the participant (prior knowledge of the environment). The participant’s limited
cognitive and acting resources characterise participants imperfectness.

Unlike many other approaches to DM, Bayesian decision theory with its solid axiomatic basis pro-
poses a systematic treatment of considered DM problem under uncertainty: given a complete prob-
abilistic description of the environment and participant’s preferences, the optimal strategy can be
found explicitly. The assumption on availability of the descriptions is however quite restrictive as
the participant operates (at most) with a part of domain-specific knowledge rising from its interaction
with the environment and preferences expressed in domain-specific terms. The limited cognition re-
sources of the imperfect participant prevent it to make the proper inferences from this limited and
uncertain knowledge and to transfer it onto the relevant probabilistic descriptions. This calls for
reliable and effective knowledge elicitation as well as the preferences elicitation.

Despite the former problem has been repeatedly treated, a variety of knowledge elicitation methods
proposed [16] heavily depends on the quality of (also imperfect) domain experts. This makes it
difficult and costly to select the proper method in a particular case. Theoretical and algorithmic
support of preference elicitation problem remains to be a fundamental problem and no ready solution
exists. One of the promising approaches considers preferences elicitation as an independent DM
problem, which optimises the amount of elicitation effort/time (cost of elicitation) with respect to a
gain provided by elicited preferences information (decision quality) [17].
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This paper concerns a multi-participant DM problem with several imperfect selfish participants.
Each of them solves own DM task given by its DM goal. The participants may cooperate and/or
compete to achieve their personal goals. The participants may also be engaged in collaborative DM,
i.e. they may have a common goal. The decentralised settings suggests the imperfect participant con-
sider how its imperfect neighbours will behave in order to achieve their DM goals efficiently. Prac-
tically it means the participant should model knowledge and preferences of its neighbours, which
contradicts participant’s limited resources.

The paper proposes a way how to share the knowledge and preferences between imperfect selfish
participants. The proposed approach formulates and solve the task as a specific DM problem. The
solution does not force the participants to increase complexity of their models of environment and
preferences while allowing them to handle partially incompatible, fragmental knowledge pieces.

2 Elements of Bayesian Decision Making

A participant selects and uses DM strategy S ∈ S 6= ∅ that maps available knowledgeK ∈K on the
participant’s actions A ∈ A 6= ∅ to reach a preferred closed-loop behavior B = (D,X,A), where
D ∈ D denotes observed data and X ∈ X denotes considered but unobserved entities (internals).
DM under uncertainty arises when the participant cannot uniquely assign B to S. Under the widely
acceptable conditions [12, 1], the rationally chosen strategy IS minimizes the expectation ES of a
real-valued performance index IS

IS ∈ Argmin
S∈S

ES[IS] =

∫
B

IS(B)FS(B)µ(dB). (1)

In (1), FS is a Radon-Nikodým derivative (rnd) – with respect to a product, strategy-independent,
measure µ – of a probabilistic measure describing the loop formed of the participant’s environment
and the DM strategy S. The closed-loop model can be factorised as FS = M × S where the rnd M
is a participant’s model of its environment. The real-valued strategy-dependent mapping IS spec-
ifies DM preferences while respecting participant’s risk attitude. The further exposition replaces
the traditional choice of IS by defining an ideal closed-loop model, determined by the rnd IF and
interpreted as the closed-loop model with the strategy IS (1), i.e., IF = F IS.

With IF chosen, the optimal strategy OS is defined as a minimizer of the Kullback-Leibler divergence
(KLD) D(·||·), [9], of the closed-loop model FS on its ideal counterpart IF

OS ∈ Argmin
S∈S

D(FS|| IF) =
∫
B

FS(B) ln

(
FS(B)
IF(B)

)
µ(dB), FS(B) = M(B)S(B). (2)

This fully probabilistic design (FPD) [6] is a dense extension of traditional designs (1), [7], so that
we can focus on it further on (for a related learning perspective, see [14]). The rnds in (2) are
implicitly conditioned on the knowledge available for the design. Use of FPD relies on the ability
to:
• specify quantitatively DM elements, i.e.,
? knowledgeK, dataD, internals’X and actions’A sets on which the involved functions act,
? environment model given by the rnd M and used in the design (2),
? set of admissible strategies S among which the optimal strategy OS (2) is searched for,
? an ideal closed-loop model IF = IM IS specifying DM preferences, constraints and risk attitude;

• evaluate the strategy OS, i.e., store, integrate and optimise functions in (2), and finally apply OS.

3 Support of Imperfect Bayesian participant

Support of computational and implementation aspects of DM is developing permanently. Concep-
tual complexity boundaries are being crossed by a broad use of distributed solutions. This allows
us to focus on the neglected support of creation of the DM elements (the items marked by ?, see
Section 2).

The selection of respective variables forming the considered behavior can be addressed by Bayesian
testing of hypotheses, e.g. [1], or can be avoided via Bayesian averaging [11]. The choice of ranges
of respective variables is less supported. A use of environment models having supports with un-
known bounds seems to be an appropriate approach, e.g. [10].
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When addressing a construction of the environment model and of the ideal rnd, the FPD allows the
unified treatment due to the common probabilistic language. The subsequent discussion made in
terms of general rnds is applicable to the environment model, the ideal rnd as well as to the factors
in them (e.g. to prior rnd describing internals).

Design of a complete set of DM elements from the knowledge available to an imperfect participant
is a specific decision task and as such is formulated and solved. We call this task supporting DM
to distinguish from the original DM (supported DM). The supporting DM tasks are formulated via
FPD. To simplify reading, elements of the original DM are denoted by small-letters counterparts of
the general notation. Specifically, b ∈ b is the original closed-loop behavior and the rnd

f ∈ f ⊂ f4 =

{
f(b) : f(b) ≥ 0,

∫
b∈b

f(b)µ(db) = 1

}
(3)

concerns the original DM task. To suppress technicalities, finite cardinality |b| of the behavior set
b = {b1, . . . , b|b|} is assumed. Then, µ is a counting measure and the rnd f is a finite-dimensional
vector belonging to the simplex (3). General validity of obtained results is conjectured.

Approximation of Rnds: Often, a rnd f constructed from the available knowledge is too complex
to be treated by an imperfect participant and has to be approximated by a rnd f̂ ∈ f̂ ⊂ f4 (3).
The approximation is supporting DM problem with an action A = f̂, knowledge K = f of the
approximated pdf. The corresponding closed-loop model, conditioned on the knowledge available
for design of the optimal approximation strategy OS(̂f|f), is F(b, f̂|f) = f(b)S(̂f|f) and uses the
fact that the rnd f models b. The ideal closed-loop model is specified as IF(b, f̂|f) = f̂(b)S(̂f|f). The
choice of the first factor means that the approximating rnd is to describe ideally the original behavior.
The second factor expresses a lack of additional requirements on the constructed S(̂f|f): the strategy
resulting from the design is accepted as the ideal one. This type of choice was called leave-to-the-
fate option, [5]. With this choice, the KLD (2) is linear in S(̂f|f) and reaches its minimum for the
deterministic strategy providing the optimal approximation

Ôf ∈ Argmin
f̂∈̂f

D(f||̂f). (4)

This approximation principle was justified, using rather different arguments, in [2].

Minimum KLD Principle: The approximation discussed above requires complete knowledge of
the approximated pdf f. Here, the considered knowledge about the approximated f is more vague

K : f ∈ f ⊂ f4 (3) and a rnd f0 ∈ f4 is an available prior (flat) guess of f. (5)

The incomplete knowledge of f implies that this rnd belongs to unobserved entities (internals) X =
f of the supporting DM problem. The corresponding action is a probabilistic estimate of f, i.e.,
A = F(f) ∈ F with

F = {F(f) : rnds with support on f ⊂ f∆} . (6)
The behavior consists of B = (b, f, A). The corresponding closed-loop model is then

F(b, f, A) = F(b|f, A)F(f|A)F(A) = f(b)A S(A|K), (7)

where meaning of f as a model of b ∈ b and the definition of A are exploited. The chosen ideal rnd
IF(b, f, A) = IF(b|f, A) IF(f|A) IF(A) = f0(b)A S(A|K), (8)

represents preferences of this supporting DM task: i) the rnd f0(b) is the best (prior) guess of the
model of the original behavior, see (5), ii) both action and strategy are left to their fate as no prior
preferences exist among them . Consequently, the action and strategy enter the optimized KLD
linearly. It implies that the optimal strategy and the action are deterministic with a full mass on

Of ∈ Argmin
f∈f

D(f||f0). (9)

The result (9) coincides with the minimum KLD principle and reduces to the maximum entropy
principle if f0 is a uniform rnd. It was axiomatically justified in [13] for the set f specified by given
values of given linear functionals on f4 (3). The following alternative to the knowledge (5)

K : f ∈ f ⊂ f4 and a rnd A0 = F0(f) ∈ F, is available prior (flat) guess of A (10)

3



does not change the closed-loop model (7) but leads to the ideal rnd, differing from (8),
IF(b, f, A) = IF(b|f, A) IF(f|A) IF(A) = f(b)A0S(A). (11)

It respects that f models b, takes A0 = F0(f) as the best prior guess of A = F(f|A) and leaves the
strategy S(A) to its fate. The resulting choice of strategy generalises the minimum KLD principle

OF ∈ Argmin
F∈F

∫
(b,f)

f(b)F(f) ln

(
F(f)

F0(f)

)
µ(d(b, f)), F = rnds acting on f, see (6). (12)

Use of (4), (9) and (12) for constructing DM elements is exemplified below.

Extension of Non-Probabilistic Knowledge: Prior non-probabilistic knowledge can be often ex-
pressed by restricting f4 to the set f in (5) for which functionals Ef [φκ] =

∫
b
φκ(b)f(b)µ(db) = 0,

κ ∈ κ = {1, 2, . . . , |κ|}, |κ| < ∞. Indeed, participants often exploit deterministic models result-
ing from the first principles and domain-specific knowledge. They are mostly expressed by a set
of equations φκ(b) = εκ(b), where εκ(b) is a modelling error. Constraints Ef [φκ] = 0 then simply
express an expectation that modelling error is unbiased. Known ranges εκ(b) of errors can modelled
in the same way. It suffices to take φκ(b) = indicator of εκ(b). If the expectation that modelling
errors are out of this range is too high, the second moments serve well for error characterization.
Known ranges of variables forming behavior can be respected via range indicators or the second
moments similarly as modeling errors. After specifying the set f , minimum KLD principle (9) is
applied and possibly followed by an approximation of the obtained f = Of by a feasible f̂ according
to (4). The needed prior guess f0 is chosen as a soft delimitation of the support b of the involved
rnds. An algorithmic implementation well supports imperfect participants, e.g. [4].

Combination of Incompletely Compatible Rnds: The set f specified by conditions Ef [φκ] = 0,
∀κ ∈ κ, can be empty as the processed knowledge pieces are incompletely compatible. Then, a
meaningful solution of (9) does not exist. By considering various “compatible” subsets of these
conditions, say considering them individually, we get a collection of different rnds fκ ∈ f4 (3)
that have to be combined into a single representant f̂. This is a prototype of DM task that has
to be resolved when supporting imperfect participants. Especially, it is believed to be an efficient
tool for solving, otherwise extremely hard, problems of de-centralized decision making [3]. The
representant f̂ is found via the generalized KLD principle (12). The behavior b ∈ b is assumed to be
described by an unknown rnd f ∈ f ⊂ f4, where f is delimited by the specifying (10)

K : EF[D(fκ||f)] ≤ βκ <∞, κ ∈ κ = {1, . . . , |κ|}, |κ| <∞,
F0(f) = prior (flat) guess of the action , see (6), and fκ(b) are given rnds in f4. (13)

The constraints on the expected KLD of fκ on f state that the rnd f = f̂ is acceptable compromise
with respect to a given fκ if it is its good approximation, cf. (4). Under constraints (13), the optimal
action OF ∈ F, cf. (6), defined by (12), minimizes Kuhn-Tucker functional, given by multipliers λκ,

OF ∈ Argmin
F∈F

∫
(b,f)

F(f)

[
f(b) ln

(
F(f)

F0(f)

)
+
∑
κ∈κ

λκfκ(b) ln

(
fκ(b)

f(b)

)]
µ(d(b, f)). (14)

It gives OF(f) ∝ F0(f)
∏
b∈b

f(b)ρ(b) with ρ(b) =
∑
κ∈κ

λκfκ(b), λκ ≥ 0 respect inequalities in (13).

For the conjugated prior guess of Dirichlet form F0(f) ∝
∏
b∈b f(b)

ν0(b)−1 with ν0(b) > 0,∫
b
ν0(b)µ(db) < ∞, the rnd OF(f) (10) is also a Dirichlet rnd given by ν(b) = ν0(b) + ρ(b).

This rnd has expected value, which is a “point” representant of incompletely compatible rnds fκ,
κ ∈ κ,

f̂(b) = EOF[f(b)] =
ν0(b) +

∑
κ∈κ λkfκ(b)∫

b
ν0(b)µ(db) +

∑
κ∈κ λκ

= affine combination of the merged rnds. (15)

Extension of Fragmental Rnds: The combination of rnds (15) provides invaluable tool for sharing
knowledge/preferences among participants indexed by κ ∈ κ [8]. Due to their imperfection, they
may provide only a conditional (marginal) version of fκ(b), i.e.,

b = (uκ,mκ, kκ) = behavior part (uninteresting for, modelled by, known to) the κth rnd provider.
(16)
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Applicability of merging (15) requires an extension of rnds fκ(mκ|kκ) provided by the members of
knowledge/preference sharing group. As f̂(b) (15) is the best compromise, the extensions efκ(b) of
fκ(mκ|kκ) should be its best approximations. According to (4), they have to minimise the KLD of
f̂. It gives unique extensions efκ(b) = f̂(uκ|mκ, kκ)fκ(mκ|kκ)̂f(kκ). Inserting these extensions into
(15), we get an equation for systematic combination of fragmental incompletely specified knowl-
edge/preferences originating from different sources or different participants

f̂(b) = EOF[f(b)] =
ν0(b) +

∑
κ∈κ λk f̂(uκ|mκ, kκ)fκ(mκ|kκ)̂f(kκ)∫
b
ν0(b)µ(db) +

∑
κ∈κ λκ

.

The merger f̂(b) can be either exploited externally [15] or projected back to domains of respective
imperfect participants offering them corrected but understandable knowledge: they are not bothered
by the uκ-th part of the behaviour, see (16).

4 Open Problems in Construction of DM Elements

The paper proposes a methodology for sharing of knowledge and strategies among participants, that
helps to overcome the non-realistic assumption on participants’ unlimited abilities.

In addition to non-trivial conversion into algorithms, the future work should find answers on the
following questions.
• Is the outlined approach the “best” one?
•What is extent of ambiguity in our assumptions and tools?
•What are relationships to alternative approaches?
•What will be an emergent behavior of a network of interacting participants using our tool set?
• Can we use our approach for modelling natural/societal systems?
• Can be Bayesian DM enriched so that approximations (projections) become its inherent part?
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