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Abstract 

This paper introduces a novel modeling framework for hybrid systems 
involving automation and multiple human decision-makers. This 
framework, called “network-form games”, combines Bayes nets with game 
theoretic concepts for modeling bounded rational humans. It allows the 
prediction, control and design of such hybrid systems.  We illustrate the 
framework for automated recommender systems that help human pilots 
avoid mid-air collisions, presenting some parameter trade analyses of such 
systems. 

 

1 Introduction  

Traffic Alert and Collision Avoidance System (TCAS) is an aircraft collision avoidance 
system currently mandated on all US domestic aircraft with maximum take-off mass 
exceeding 5700 kg.  It is an onboard system designed to operate independent of ground-
based air traffic management systems to serve as the last layer of safety in the prevention of 
mid-air collisions (MACs).  TCAS continuously monitors the airspace around an aircraft and 
warns pilots of potential threats by issuing a recommended action, or Resolution Advisory 
(RA), to the pilot.   

While TCAS has performed satisfactorily in the past, one key weakness is that it assumes a 
deterministic pilot model.  Specifically, TCAS assumes that a pilot receiving a TCAS RA 
will delay for 5 seconds, and then accelerate at 1/4 g to perform the RA maneuver.  Although 
pilots are trained to obey TCAS RAs in this manner, a recent study of the Boston Area [1] 
has found that only 13% of RAs are fully obeyed -- the aircraft response maneuver met the 
TCAS design assumptions in vertical speed and promptness.  In 64% of the cases, pilots 
were in partial compliance -- the aircraft moved in the correct direction, but did not move as 
promptly or as aggressively as instructed.  Shockingly, the study also found that in 23% of 
the RAs, the pilots actually responded by maneuvering the aircraft in the opposite direction 
of that recommended by TCAS (although a number of these cases of non-compliance may be 
due to visual flight rules).  The assumption is clearly not valid in the real world, and the 
associated risks of using the system will increase significantly in NextGen operation as air 
traffic density experiences exponential growth [2].  

Pilot interviews have offered many insights toward understanding these statistics.  During a 
mid-air encounter, the pilot does not blindly execute the RA maneuver.  Instead, he combines 
the RA with other sources of information to predict his best course of action.  In doing this, 



he quantifies the quality of a course of action in terms of a utility function defined over 
possible results of that course of action. That utility function does not only involve 
proximity to the other aircraft in the encounter, but also involves how drastic a maneuver the 
pilot makes. For example, if the pilot believes that a collision is unlikely based on his 
observations, he may opt to ignore the alarm and continue on his current course, thereby 
avoiding any loss of utility incurred by maneuvering. This is why a pilot will rationally 
decide to ignore alarms with a high probability of being false.  

When designing TCAS, a high false alarm rate need not be bad in and of itself. Rather what 
is bad is a high false alarm rate combined with a pilot’s utility function to result in pilot 
behavior which does not maximize expected social welfare. This more nuanced perspective 
allows far more powerful and flexible design of alarm systems than simply worrying about 
receiver operating characteristic (ROC) curves. 

Here we elaborate this perspective. We introduce a framework for predicting the behavior of 
a hybrid system comprising automation and humans who are motivated by utility functions 
and anticipation of one another’s behavior. We illustrate this framework by modeling the 
TCAS hybrid system. A fully formal elaboration of this framework, called “network-form 
games,” can be found in [3]. 

 

2 Network-form game 

A Bayes net can be used to model the behavior of a hybrid system involving only a single  
human by considering the human as a node in the network. (For example, this is the basis of 
influence diagrams.) Such a model reduces the human to a fixed conditional probability 
distribution. However, when there are multiple people in the system, more complex behavior 
arises because the humans determine their conditional distributions by anticipating the 
distributions of the other humans in the system.  Such determination of conditional 
distributions by anticipating other conditional distributions is not considered in the 
conventional Bayes net literature [4]-[6]. However, it forms the core of game theory [7]-[9].  
In particular, recent behavioral game theory models that replace the Nash equilibrium 
concept, such as  the Quantal Response Equilibrium and Level-k Thinking, have been found 
to accurately predict results of experiments involving multiple interacting human behaviors 
[9]-[10]. 

Building on earlier approaches [5], in this paper we introduce a novel framework, “network 
form games,” that combines Bayes nets and Game Theory to model hybrid systems that 
involve both automation and multiple interacting humans. In a net-form game, the Bayes net 
serves as the underlying probabilistic framework to model the system.  Humans are 
quantified as special “player” nodes in the Bayes net, all other nodes being “nature nodes.”  

Formally, the distinction between nature nodes and player nodes is that nature nodes come 
with conditional probability distributions, while player nodes do not. Instead each player 
node is associated with a utility function, which maps the joint value of all the variables in 
the net to a real number. To fully specify the Bayes net it is necessary to determine the 
conditional distributions at the player nodes to go with the distributions at the nature nodes. 
The distribution at each player node is determined by using the set of all utility functions, 
via game theoretic equilibrium concepts. Here we do not formalize this in its full generality. 
Instead, in the next section we illustrate it for a particular equilibrium concept, on the 
aircraft collision avoidance problem. 

 

3 Using a network-form game to model  mid-air encounters  

The complete net-form game representation for a three aircraft encounter is shown in Figure 
1.  At any time t, the true system state of the mid-air encounter is represented by the world 
state, S, which includes the dynamic states of all aircraft.  Since the pilots and TCAS 
hardware are not able to observe the world state perfectly, a layer of nodes is introduced to 
model observational noise and incomplete information.  W represents the pilot’s observation 
of the world state, while WTCAS represents what the TCAS sensors perceive.  This model 
assumes that all aircraft are TCAS equipped, and W and WTCAS are partial observations of S 



corrupted with Gaussian noise.  A simplified model of the current TCAS logic is applied to 
WTCAS to produce a TCAS RA, T. The player gets to observe W and T and chooses an 
aircraft command, π.  Aircraft dynamics are simulated forward in time to the next time step. 
RAs of each aircraft are broadcasted due to the coordination mechanism of TCAS.  For this 
reason, the RAs are also propagated to the next time step.    

For computational simplicity, we assume that pilots only get to choose a single move, and 
they do so when they receive their initial TCAS RA.  Furthermore, they do not change their 
move for the remainder of the encounter.  When pilots are deciding their  move, they assume 
that they are playing a simultaneous move game with other pilots.  (Note that the timing of 
decisions is in reality stochastic as well as asynchronous.  Adapting the framework to allow 
for such stochastic time is subject of ongoing research.) 
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Figure 1: Network-form game representation of a mid-air encounter 

We crafted player utility functions through interviews with pilots.  (Refining these utility 
functions using experimental data is the subject of ongoing future work.)  The player’s 
utility function is modeled to be of the following form: 

                                         

where a1, a2, and a3 are constant weights, δ is a small positive constant, dmin is the forecasted 
distance of closest approach between the aircraft, and π0 is the pilot's current command.  The 
utility function is a linear combination of three terms.  The first term, which has the heaviest 
weight, reflects the pilot’s fear of a collision by decreasing utility as d min decreases.  The 



choice of a logarithm function captures the fact that utility is much more sensitive when 
aircraft are close together than when they are far apart.  The second term represents the 
pilot’s desire to continue on his current trajectory, and thus penalizes moves that differ 
significantly from the current path.  All other things being equal, the third term reflects an 
inclination to follow protocol, and thus to penalize moves that differ significantly from the 
issued RA. 

Since dmin depends on the trajectories of all aircraft, which depend on the joint moves of al l 
the players, each pilot must anticipate the other pilots’ moves to decide how to act. However 
in doing this, the pilot realizes that the other pilot will be anticipating their move, etc., etc. 
To reduce this cycling to a prediction of pilot behavior we combine two experimentally 
validated game theoretic models, Level-k Thinking and Satisficing. We call this combination 
“Level-k Best-of-M.”   

A number of studies [7]-[10] have shown that Level-k Thinking performs well at predicting 
experimental data in games.  The concept of Level-k is defined recursively as follows: A 
level k player plays as though all other players are playing at level k-1, who, in turn, plays as 
though all other players are playing at level k-2, etc.  The process continues until level 0 is 
reached, where the player plays according to a prior distribution.  Note that this may cause 
ricocheting to occur.  For example, if player A is a level 2 player, he plays as though player 
B is a level 1 player, who in turn plays as though player A is a level 0 player.  In most 
games, k is a fairly low number for humans; experimental studies have found k to be 
somewhere between 1 and 2 [7].  For simplicity, here we model all players as being level 2.  

The concept of Satisficing [11]-[13] states that humans are unable to evaluate the probability 
of all outcomes with sufficient precision, and thus often make decisions based on adequacy 
rather than true optimum.  The Best-of-M algorithm models this notion in the decision-
making process as follows:  The player samples M own candidate moves, and evaluates the 
expected value of each against M’ sampled possible environment scenarios (i.e. the player 
considers M' samples of the joint probability of all nodes in the net minus those observed 
and those controlled by the player), and chooses to execute the move that results in the 
highest expected value of utility.  M and M’ are parameters that model player rationality, and 
are chosen to be 5 and 10, respectively in our studies except where indicated otherwise.  

Note that to apply any game theoretic concept (not just level k) to set the conditional 
distribution at a player node, any unknown quantities in the utility function of that node must 
be inferred from values of the inputs to that node. (This reflects that humans in the hybrid 
system must estimate those quantities that they do not know but are concerned about.)  In the 
conflict resolution problem, this means that players must estimate S, the other players’ 
moves, and other unknown quantities given W and T only.  The expected value of the 
player’s utility function for a candidate move is given by:  
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is the importance sampling proposal distribution for variance reduction, and ui is the utility 
function.  Index i indicates self, whereas index –i signifies all players other than self.  
Substituting and expanding via Bayesian inversion, we have:  

 



        
     

    
    

 
         

     
    

    
 
             

 
           

  
                        

        
        

        

    
     

         
             

            
        

    
 

         
     

    
    

 
         

     
    

    
 
             

 
          

  
        

 
          

 
     

     
     

           

    
      

        
          

 

 

We approximate the integral above by sampling the distribution Q and calculating: 

 

   
         

  
              

  
         

  
               

        
 
       

        

 
        

          

  

   

 

Note that the prior distribution P(S
j
) is dependent upon the encounter model used; the 

proposal distributions Q(W
j
TCAS | WTCAS) and Q(S

j
 | S) are tight Gaussian distributions about 

WTCAS and S respectively, and π-i is calculated for one k level below.  The players do not 
have access to the true quantities WTCAS and S, but rather the simulator does, and therefore 
can make use of it as a technique to reduce variance.  

 

4 Trade analyses  

Because of its sampling nature, Level-k Best-of-M is well-suited for use with Monte Carlo 
techniques. In particular, we can use such techniques to assess performance of the overall 
system, using a social welfare function G defined as the minimum distance between aircraft 
during the encounter. 

To demonstrate this capability, parameter trade analyses were performed on the mid-air 
encounter model, and sample results are shown in Figure 2.  In each case, social welfare is 
observed while selected parameters are varied.  The quantification of predicted 
improvements in social welfare (or any other metric) would be especially relevant to, for 
example, a system designer designing an improvement to the system, or a funder who is 
allocating resources for development projects.  In Figure 2a, Mw and MWTCAS, which are 
multiples on the noise of W and WTCAS respectively, are plotted versus social welfare G.  It 
can be seen that as the pilot and TCAS system’s observations get noisier (e.g. due to fog  or 
faulty sensors), social welfare decreases.  However, a noteworthy observation is that social 
welfare decreases faster with Mw (i.e. when the pilot has a poor visual) than with MWTCAS 
(i.e. noisy TCAS sensors).  In Figure 2b, the dependence of social welfare on selected TCAS 
internal logic parameters DMOD and ZTHR are shown.  These parameters are primarily used 
to define safety buffers around the aircraft, and therefore it makes intuitive sense to observe 
that there is an observed increase in G as these parameters are increased.  Figure 2c plots 
player utility weights vs. social welfare.  In general, the results agree with intui tion that 
higher a1 (i.e. stronger desire to avoid collision) and lower a 2 (i.e. weaker desire to stay on 
course) lead to higher social welfare (i.e. safety).  This offers quantification on the potential 
increase in safety that additional training, regulat ions, incentives, and other pilot behavior-
shaping programs may promise.  Figure 2d plots model parameters M and M’ versus G.  
These parameters are not ones that can be controlled, but rather ones that should be set as 
closely as possible to reflect reality.  Note that model parameters in this study are 
uncalibrated, and are set according to the best judgment of the modelers.  The primary focus 
of this project is to demonstrate the modeling technology, and thus a follow-on study to 
refine the model using experimental data is recommended. 
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Figure 2: Trade analysis results of net-form game mid-air encounter model 
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