
This article was downloaded by:[Filip, Jiří]
On: 18 September 2007
Access Details: [subscription number 781742849]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Computer
Mathematics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713455451

BTF modelling using BRDF texels
Jiří Filip a; Michal Haindl a
a Institute of Information Theory and Automation, Academy of Sciences of the Czech
Republic, Prague, Czech Republic

Online Publication Date: 01 September 2007
To cite this Article: Filip, Jiří and Haindl, Michal (2007) 'BTF modelling using BRDF
texels', International Journal of Computer Mathematics, 84:9, 1267 - 1283
To link to this article: DOI: 10.1080/00207160701253802
URL: http://dx.doi.org/10.1080/00207160701253802

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713455451
http://dx.doi.org/10.1080/00207160701253802
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [F
ili

p,
 J

iří
] A

t: 
12

:0
4 

18
 S

ep
te

m
be

r 2
00

7 

International Journal of Computer Mathematics
Vol. 84, No. 9, September 2007, 1267–1283

BTF modelling using BRDF texels
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The highest fidelity representations of realistic real-world materials currently comprise Bidirectional
Texture Functions (BTF). The BTF is a six-dimensional function depending on view and illumination
directions as well as on planar texture coordinates. The huge size of such measurements, typically
in the form of thousands of images covering all possible combinations of illumination and viewing
angles, has prohibited their practical exploitation, and obviously some compression and modelling
method of these enormous BTF data spaces is inevitable. The two proposed approaches combine BTF
spatial clustering with cluster index modelling by means of efficient Markov random field models.
The methods allow the generation of a seamless cluster index of arbitrary size to cover large virtual
3D object surfaces. Both methods represent original BTF data using a set of local spatially dependent
Bidirectional Reflectance Distribution Function (BRDF) values which are combined according to
the synthesized cluster index and illumination/viewing directions by means of two types of Markov
random field models. BTF data compression using both methods is about 1:200 and their synthesis is
very fast.

Keywords: Markov random fields; Image modelling; Pattern recognition; Texture synthesis;
Virtual reality

AMS Subject Classifications: 68U10; 68U05

1. Introduction

Recent progress in graphics hardware computational power has finally enabled the fast and
visually realistic rendering of virtual reality models that, until recently, was impossible. Such
realistic models require, among other things, naturally looking textures covering virtual objects
of the rendered scene. Applications of these advanced texture models in virtual reality systems
now allow photo-realistic material appearance approximation for complex tasks such as visual
safety simulations or interior design in the automotive/airspace industry or architecture.

For such advanced applications, standard textures lit by reflectance models alternatively
combined with bump-mapping are not able to offer correct and realistic reproduction of the
material appearance. This is caused by the inherited complexity of many materials, the rough
structure of which produces visual effects such as self-shadowing, masking, inter-reflection or
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1268 J. Filip and M. Haindl

Figure 1. Relationship between illumination and viewing angle within the texture coordinate system.

subsurface scattering. One way to capture these materials’attributes is to use a much more com-
plex representation of the rough or 3D texture called the Bidirectional Texture Function (BTF).
Different from four-dimensional Bidirectional Reflectance Distribution Function (BRDF),
BTF is a six-dimensional reflectance function depending on view and illumination directions
as well as on planar texture coordinates, as illustrated in figure 1. This function is typically
acquired in the form of several thousands of images covering varying light and camera direc-
tions, as shown in figure 2. However, the huge size of the measured BTF data prevents their
use in any useful application; therefore the introduction of a fast compression and modelling
method for BTF data is inevitable.

The majority of the results in the BTF area mainly deal with compression. They are either
based on the eigen-analysis of the BTF data space [1–4] or on applications of pixel-wise
reflectance models [5–8]. Although these methods can provide reasonable compression ratios
(1/20–1/200) and visual quality, their main drawback is that they do not allow arbitrary size
BTF synthesis, i.e. BTF texture enlargement.

To solve this problem, BTF modelling methods are necessary. Such methods are not only
capable of enlarging the BTF space as required, but they simultaneously imply a compres-
sion capability as well. Unfortunately, only a few BTF enlargement approaches have been
published. The majority of the available methods are based either on simple texture repetition
with edge blending or on more or less sophisticated image tiling methods [9–13], and some
of them can also be adapted for BTF synthesis (e.g., [14, 15]).

Finally, a group of probabilistic BTF models has recently been proposed [16, 17]. These
methods allow unlimited texture enlargement, BTF restoration, huge BTF space compression
and even the modelling of previously unseen BTF data. They are based on rough BTF segmen-
tation in a space of illumination and viewing directions. The individual cluster representatives
are the BTF images closest to cluster centres, which are combined with an estimated range-
map in a bump-mapping filter for the required illumination and viewing angles.Although these

Figure 2. Illumination directions (i = 1, . . . , 81) in the BTF data used. The viewing directions (v = 1, . . . , 81) are
the same.
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BTF modelling using BRDF texels 1269

Figure 3. The overall scheme of the proposed BTF enlargement method.

methods achieve hugely impressive compression ratios, they sometimes compromise visual
quality for certain materials.

In this paper we present a novel BTF model enabling seamless enlargement as well as the
compression of BTF data. The overall scheme of the proposed model is illustrated in figure 3.

The method starts with normal-map estimation of the underlying material surface using
photometric stereo. The estimated normal-map N is enlarged to the required size using a
probabilistic MRF model. In the following step the original BTF data are clustered in the
planar space. The results are cluster representatives C and cluster index I, which is used for
new cluster index IS generation up to the required size of the synthesized normal-map NS . This
enlargement exploits the matching between the estimated N and synthesized NS normal-maps
and BRDFs (stored in C) at neighbouring planar locations.

The paper is organized as follows. Spatial BTF data segmentation is described in section 2
and surface geometry estimation (normal-map) is described in section 3. Surface geometry
synthesis using the MRF model is the subject of section 4, while the final BTF data enlargement
step is described in section 5. The subsequent sections show the results of the proposed model,
discuss its properties and conclude the paper.

2. BTF space segmentation

The BTF data employed in this study were obtained from Bonn University [18]. We used BTFs
of two different types of lacquered wood. Each data set comprises 81 viewing positions nv and
81 illumination positions ni (see figure 2), resulting in 6561 images with resolution 800 × 800
(the measurements after registration and rectification). To reduce the computational demands
of the following BTF clustering step, an image tiling approach was applied. The method [12]
finds sub-optimal paths in the original data to cut the required set of connectable BTF tiles. In
our experiments, only one BTF tile per material was used.

The input to our algorithm is a seamless BTF tile in the form of ni nv illumination/view-
dependent images of size nx × ny . A vector of BTF values for a fixed planar position
corresponds to the local BRDF and is denoted BRDF in this paper. In the first preprocessing
step, all BTF images were converted into a CIE Lab perceptually uniform colour space and
only data from luminance channel L were used in the data vector. The following K-means
clustering was performed in the nx × ny planar space corresponding to individual pixels of
BTF. Each pixel represents L-channel’s BRDF of surface geometry at planar location (x, y).
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1270 J. Filip and M. Haindl

Figure 4. Results of the proposed BTF data clustering method (nc = 256 clusters) mapped onto a 3D object (first
column) in comparison with the original BTF tile mapping (second column) for two kinds of lacquered wood.
Difference images (more visible in the colour electronic version) are depicted in the third column.

The clustering distance function is

d(x, y, k) =
nv∑

v=1

ni∑
i=1

|B(i, v, x, y) − C(k, i, v)| cos θv, (1)

where B(i, v, x, y) is the corresponding BTF value, C(k, i, v) are cluster centres and i =
1, . . . , ni and v = 1, . . . , nv are illumination and viewing directions of the original BTF data
(see figure 1), respectively. The view elevation angle cosine accommodates the shortening
of the surface emitting area. Clustering results in the index array I(x, y) ∈ 1, . . . , nc and the
set of nc cluster representatives C(k, i, v) of size nc × 3ninv corresponding to the closest
colour BRDFs to cluster centres. Note that the individual colour BRDFs representing cluster
centres C correspond to the representative set of material locations bearing the most distinct
appearance over the BTF tile. The results of the proposed BTF clustering (nc = 256) mapped
onto the 3D object in comparison with the original BTF data mapping are shown in figure 4.

3. Surface geometry from the BTF

In order to find a smooth spatial representation of the cluster index I for further enlargement by
means of the MRF model we use a normal-map describing the geometry of the original material
surface. For this the standard photometric stereo technique [19] was applied. This approach
is advantageous since the BTF data comprise a number of images with fixed viewpoint and a
variety of defined illumination source directions. As we have many more than the necessary
three different light positions we used over-determined photometric stereo. All directions to
light sources are ordered in the rows of matrix L and the corresponding pixel intensities for
different illumination directions are ordered in the vector E(x, y) as follows:

L =
⎡
⎢⎣

L1x L1y L1z

...
...

...

Lnx Lny Lnz

⎤
⎥⎦, E(x, y) =

⎡
⎢⎣

E1(x, y)
...

En(x, y)

⎤
⎥⎦. (2)

The intensity equation can be written

E(x, y) = ρL N(x, y),
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BTF modelling using BRDF texels 1271

Figure 5. Example of five original BTF images taken from different illumination directions and the corresponding
estimated normal-map for lacquered wood material.

where ρ is the surface albedo which was set to constant value ρ = 1. Then the surface normal-
map N of the BTF tile at each pixel can be computed by means of least-squares fitting

N(x, y) = (LTL)−1LTE(x, y)

||(LTL)−1LTE(x, y)|| . (3)

Note that the correct normal-map estimate using photometric stereo requires a Lambertian
surface, i.e. a surface reflecting the light equally in all directions independent of illumination
and viewing direction. This is rarely the case when BTF data are used as the input images, thus
the estimated normal-map is mostly estimated incorrectly. Another principal problem is the
normal-map estimation of materials with a smooth surface, e.g. lacquered wood, as shown in
figure 5. However, in our method we do not need correctly estimated normals in their physical
sense, but we exploit the estimated normal-map as some kind of illumination invariant, smooth,
unique representation of the spatial BTF structure which can be further enlarged using the
technique proposed in section 4. For this reason we can afford to use photometric stereo even
for normal-map estimation of strongly non-Lambertian smooth surfaces.

The alternative approach is to use laser- or structured-light-based range scanners. However,
a laser scanner is a costly device and does not allow satisfactory measurement of textile
materials due to the laser beam scattering in the material structure. The ability to measure fine
material structure by a structured light scanner is also limited due to the shadows cast by the
structure elements, etc.

4. Probabilistic normal-map modelling

A normal-map enlargement in the scope of this paper is based on two different Markov random
field (MRF) models. The simultaneous modelling of such a multichannel image, i.e. normal-
map, generally requires three-dimensional models. If a 3D data space can be factorized, then
these data can be modelled using a set of lower-dimensional 2D random field models, otherwise
it is necessary to use a 3D random field model. Although full 3D models allow unrestricted
spatial-channel correlation modelling, their main drawback is the larger number of parameters
that have to be estimated and, consequently, the slightly more time-demanding analysis and
synthesis.

In this paper, both approaches to multichannel modelling are compared. The first is a three-
dimensional causal autoregressive model (3D CAR) and the second is its two-dimensional
version (2D CAR).

Contrary to the models presented in this paper the alternative non-causal MRF models
do not have any particular restriction on the shape of the contextual neighbourhood (CN);
however, their computation is very slow since most non-causal MRF models require the use
of iterative Monte Carlo methods. On the other hand, causal models restrict the CN shape to be
either causal or unilateral, i.e. during computation the CN takes into account only the known
or already computed image pixels. This enables the use of some exceptional models for which
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1272 J. Filip and M. Haindl

Figure 6. The overall 3D CAR smooth texture model scheme.

Figure 7. The overall 2D CAR smooth texture model scheme.

fast analytical parameter estimation is known, as well as fast model synthesis, i.e. CAR MRF.
Generally, MRF models are generative, so they do not require storage of any samples of the
original normal-map. The number of model parameters depends only on the number of input
data channels and on the size of the model’s contextual neighbourhood.

The whole normal-map enlargement process can be split into two major parts, as illustrated
in figures 6 and 7. The first is a simultaneous analysis of all subspace images assuming the
underlying MRF model. The second part is the fast subspace image synthesis of arbitrary
resolution based on the MRF model parameters estimated in the previous analytical step.

In the case of both tested models (3D CAR, 2D CAR) the input normal-map is decomposed
into a multi-resolution grid and the data of each resolution are independently modelled by their
dedicated MRF model. This enables efficient modelling of all visual features of the subspace
images. The multi-resolution grid is created by means of a Gaussian–Laplacian pyramid, as
described in detail in section 4.1.

The results of the analytical part are several MRF models with different parameters corre-
sponding to different synthetic results. Since there is no suitable similarity measure available
with which to compare the visual quality of the colour textures, we choose the optimal model
structure according to a subjective visual comparison of the input normal-map synthesized
results.

4.1 Spatial factorization

Input normal-map Ȳ• (the notation • indicates all possible values of the corresponding index)
is decomposed into a multi-resolution grid and the data of each resolution are independently
modelled by their dedicated CAR model. Each one generates a single spatial frequency band
of the normal-map. The analysed normal-map is decomposed into multiple resolution factors
using a Laplacian pyramid and the intermediary Gaussian pyramid Ÿ (k)• , which is a sequence
of images in which each one is a low-pass down-sampled version of its predecessor. The
Gaussian pyramid for reduction factor n is

Ÿ (k)
r =↓n

r (Ÿ
(k−1)
•,i ⊗ w), k = 1, 2, . . . , (4)
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BTF modelling using BRDF texels 1273

where Ÿ (0)• = Ȳ•, ↓n denotes down-sampling with reduction factor n, ⊗ is the convolution
operation and r is the multi-index, having three components r = {r1, r2, r3}. The first com-
ponent is a row index, the second is a column index and the third is a channel index. The
convolution mask based on weighting function (FIR generating kernel) w is assumed to
execute separability, normalization, symmetry and equal contribution constraints. The FIR
equation is then

Ÿ (k)
r =

l∑
i,j=−l

ŵiŵj Ÿ
(k−1)

2r+(i,j).

The Laplacian pyramid Ẏ (k)
r contains band-pass components and provides a good approxi-

mation to the Laplacian of the Gaussian kernel. It can be constructed by differencing single
Gaussian pyramid layers:

Ẏ (k)
r = Ÿ (k)

r − ↑n
r (Ÿ (k+1)

• ), k = 0, 1, . . . , (5)

where ↑n is up-sampling with expanding factor n.

4.2 3D causal auto-regressive MRF model

The overall scheme of the 3D CAR model [20, 21] is depicted in figure 6. As input to the
model, normal-maps of size N × M = 122 × 125 for wood01 and N × M = 137 × 142 for
wood02 were estimated using the technique described in section 3.

4.2.1 3D CAR factor model. The normal-map in the previous spatial factorization step
(section 4.1) was decomposed into a multi-resolution grid and the data of each resolution was
modelled independently by a Gaussian noise driven 3D CAR model that enables simultaneous
modelling of all normal components.

Let the normal-map Y be indexed on a finite rectangular three-dimensional N × M × 3
underlying lattice I , where N × M is the image size. Let us denote a simplified multi-index
r as having three components r = {r1, r2, r3}. The first component is a row index, the sec-
ond is a column index and the third is a normal vector index. Ir specifies the shape of the
contextual neighbourhood (CN) around the actual index r = {r1, r2, r3}. The causality con-
dition is satisfied when all data needed for CN are known (relative to the chosen direction
of scanning of the image index lattice). From this causal CN the data are arranged in vector
Xr = [Y T

r−s : ∀s ∈ I c
r ]T.

The (CAR) random field is a family of random variables with a joint probability density
on the set of all possible realizations Y of the M × N × 3 lattice I , subject to the following
condition:

p(Y | �, �−1) = (2π)−3(MN−1)/2|�−1|(MN−1)/2

× exp

{
−1

2
tr

{
�−1

(−I

�T

)T

ṼMN−1

(−I

�T

)}}
, (6)

where I is the identity matrix, � is the parameter matrix, � is the covariance matrix of Gaussian
white noise and

Ṽr−1 =
(

ṼYY(r−1) Ṽ T
XY(r−1)

ṼXY(r−1) ṼXX(r−1)

)
. (7)
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1274 J. Filip and M. Haindl

The notation used in (7) is

ṼXX(r−1) =
r−1∑
k=1

XkX
T
k ,

ṼXY(r−1) =
r−1∑
k=1

XkY
T
k ,

ṼYY(r−1) =
r−1∑
k=1

YkY
T
k . (8)

The simplified notation r, r − 1, . . . denotes the multi-channel process position in I , i.e. r =
{r1, r2, r3}, where r − 1 is the location immediately preceding {r1, r2, r3}, etc. The direction
of movement on the underlying image sub-lattice is common rows scanning. The data from
the model history obtained during adaptation are denoted Y (r−1).

The 3D CAR model can be expressed as a stationary causal uncorrelated noise driven 3D
autoregressive process:

Yr = �Xr + er , (9)

where � = [A1, . . . , Aη] is the 3 × 3η parameter matrix, η = card(I c
r ), I c

r is a causal CN, er is
a Gaussian white noise vector with zero mean and a constant but unknown covariance matrix
� and Xr is the corresponding data vector obtained from a model causal CN from already
synthesized data Yr−s .

4.2.2 Parameter estimation. There are two matrices, the parameter matrix �̂r and the
noise covariance matrix �̂r , to update in each step, i.e. the CN shift on the image lattice.
Owing to the model causality and the normal-Wishart parameter, prior single CAR model
parameters (10) and (11) can be estimated analytically [21]. The parameter matrix estimate is

�̂T
r−1 = V −1

XX(r−1)VXY(r−1), (10)

and the covariance matrix estimate is

�̂r−1 = λ(r−1)

β(r)
, (11)

where

λ(r−1) = VYY(r−1) − V T
XY(r−1)V

−1
XX(r−1)VXY(r−1), (12)

VXX(r−1) = ṼXX(r−1) + VXX(0),

VXY(r−1) = ṼXY(r−1) + VXY(0),

VYY(r−1) = ṼYY(r−1) + VYY(0), (13)

and matrices VXX(0), VXY(0) and VYY(0) are the corresponding matrices from the normal-Wishart
parameter prior. Estimates (10) and (11) can also be evaluated recursively if necessary. β(r) =
β(0) + r − 1 represents the number of model movements on the image plane (β(0) > 1).
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4.3 2D causal auto-regressive model

The overall scheme of the 2D causal auto-regressive MRF model is depicted in figure 7. Since
the model is two dimensional, only the input normal-map has to be factorized by means of the
channel decorrelation step, as explained in the following section.

4.3.1 Channel decorrelation. The estimated input normal-map includes per-pixel nor-
mals normalized to unit vectors so the correlation of individual normal channels corresponding
to the x, y and z coordinates of the normal vector is present. To remove this correlation, channel
factorization using the Karhunen–Loeve transformation is utilized. This approach transforms
the original centred normal-map data space Ỹ defined on the rectangular M × N finite lat-
tice I into a new data space with K–L coordinate axes Ȳ . These new basis vectors are the
eigenvectors of the second-order statistical moments matrix


 = E{Ỹr Ỹ
T
r }, (14)

where the multi-index r has two components r = [r1, r2], the first being the row and the second
the column index. The projection of random vector Ỹr onto the K–L coordinate system uses
the transformation matrix

T = [uT
1 , uT

2 , uT
3 ]T, (15)

which has single rows uj that are eigenvectors of the matrix 
. The components of the
transformed vector,

Ȳr = TỸr , (16)

are mutually uncorrelated and if we assume that they are also Gaussian, then they are inde-
pendent, thus each transformed mono-channel factor can be modelled independently of the
remaining channel factors.

4.3.2 2D CAR factor model. Channel factorization (15) of the normal-map into individual
mono-channel factors allows us to use a simpler 2D CAR model [16]. These single orthogonal
factors of the normal-map are further decomposed into a multi-resolution grid and the data
of each resolution are independently modelled by their dedicated independent Gaussian noise
driven autoregressive random field model (CAR) as follows.

The causal autoregressive random field (CAR) is a family of random variables with a joint
probability density on the set of all possible realizations Y of the M × N lattice I , subject to
the condition

p(Y |γ, σ−2) = (2πσ 2)−(MN−1)/2 exp

{
−1

2
tr

{
σ−2

(−α

γ T

)T

ṼMN−1

(−α

γ T

)}}
, (17)

where α is a unit vector, γ is the parameter vector, σ is the variance of the Gaussian white
noise, and notation similar to the 3D CAR model is used,

Ṽr−1 =
(

ṼYY(r−1) Ṽ T
XY(r−1)

ṼXY(r−1) ṼXX(r−1)

)
,

where ṼXX(r−1), ṼXY(r−1) and ṼYY(r−1) are the matrices defined in (8).
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1276 J. Filip and M. Haindl

The 2D CAR model can be expressed as a stationary causal uncorrelated noise driven 2D
autoregressive process:

Yr = γXr + er , (18)

where

γ = [a1, . . . , aη] (19)

is the parameter vector, I c
r is a causal neighbourhood with η = card(I c

r ), er is a white Gaussian
noise with zero mean and a constant but unknown variance σ 2, and Xr is the corresponding
data vector.

4.3.3 Parameter estimation. Analogously to the 3D CAR model there are two parameters,
the parameter vector γ̂r and the noise covariance σ̂r , to update in each step.

Parameter estimation of a 2D CAR model can be performed analytically using the maximum
likelihood, the least-square or Bayesian methods. The Bayesian parameter estimations of the
causal AR model with the normal-gamma parameter prior which maximize the posterior
density are [21]

γ̂ T
r−1 = V −1

XX(r−1)VXY(r−1) (20)

and

σ̂ 2
r−1 = λ(r−1)

β(r)
, (21)

where

λ(r−1) = VYY(r−1) − V T
XY(r−1)V

−1
XX(r−1)VXY(r−1), (22)

VXX(r−1) = ṼXX(r−1) + VXX(0),

VXY(r−1) = ṼXY(r−1) + VXY(0),

VYY(r−1) = ṼYY(r−1) + VYY(0), (23)

and sub-matrices VXX(0), VXY(0) and VYY(0) are from the normal-gamma parameter prior.
Estimates (20) and (21) can also be evaluated recursively and β(r) = β(0) + r − 1 (β(0) > 1).

4.4 Normal-map synthesis

The CAR model synthesis is very simple and the Markov random field can be generated
directly from the model equation (9) (respectively (18)) with respect to the CN data vec-
tor Xr and the estimated parameter matrix �̂r (respectively γ̂r ) using a multivariate/scalar
Gaussian white-noise generator. The fine-resolution normal-map is obtained from the pyramid
collapse procedure, which is the inverse process to spatial factorization (4) and (5) described
in section 4.1. The last step, inverse channel correlation, is needed only for the 2D CAR
model. The resulting synthesized normal texture is then obtained from the set of synthesized
mono-channel images using the inverse K–L transformation according to the equation

Ỹr = T−1Ȳr . (24)

This transformation matrix T−1 has to be stored together with the estimated 2D CAR model
parameters. A comparison of the synthesized normal-maps using the NS 3D CAR model with
their originals N is illustrated in the first column of figure 9.
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5. New cluster index synthesis

New cluster index IS is obtained by row-wise scanning of synthesized normal-map NS , as
depicted in figure 8. For each normal in NS the nk closest normal from normal-map N of the
original BTF tile is determined with respect to the Euclidean metric between two unit vectors.

However, this approach alone is unsatisfactory because it allows ambiguous normal assign-
ment owing to the material surface. For instance, a normal vector pointing straight upwards
can represent either a peak or a valley on the surface. Thus, if a new index is created based only
on normal matching, the resulting enlarged BTF images are very noisy, and the synthesized
structure of the normal-map is considerably suppressed. To improve the spatial continuity of
the generated new cluster index we used information on the surface height, occlusion and the
masking of surface points, which is included in colour BRDFs of individual stored clusters
C. Individual cluster indices corresponding to candidate normal k from N are obtained from
the same (x, y) location from I, as is the spatial location of the normal k. From the obtained
nk normal candidates from the original index I, the optimal one k∗ is chosen that minimizes
the distance D between the candidate’s BRDF and the BRDFs of its surrounding pixels at
locations (x, y − 1) and (x − 1, y) from the causal neighbourhood in IS

k∗ = arg min
k=1...nc

(D(I(xk, yk), IS(x, y − 1)) + D(I(xk, yk), IS(x − 1, y))). (25)

To speed up this process the mutual distance between each couple of nc clusters is pre-
computed (26) and stored in the form of a nc × nc matrix D:

D(a, b) =
nv∑

v=1

ni∑
i=1

|C(a, i, v) − C(b, i, v)| cos θv. (26)

The (xk∗ , yk∗) position in new index IS is obtained by means of IS(x, y) = I(xk∗ , yk∗) using the
cluster indices from the original index I. The proposed matching scheme incorporates effects
such as masking and occlusions and, together with normal matching, it enables the reliable
and perceptually correct spatial ordering of individual clusters in the new enlarged index IS .
Additionally, this ordering enforces the continuity constraint by placement of similar BRDFs
into neighbouring positions in generated cluster index IS .

For BTF rendering from the proposed model the cluster representatives C and synthesized
cluster index IS have to be stored, which enables a compression ratio of approximately 1/200
(for nc = 256). The required BTF value is obtained as

BTF(x, y, i, v) = C(IS(x, y), i, v). (27)

Figure 8. The new cluster index generation scheme.
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Figure 9. Individual sub-results of the BTF enlargement process for two kinds of lacquered wood (wood01 (top)
and wood02 (bottom)) using the 3D CAR smooth texture model. Odd rows: estimated normal-map N, cluster index
I and restored BTF image for angles θi = 15◦, φi = 0◦, θv = 0◦ and φv = 0◦. Even rows: synthesized normal-map
NS , corresponding synthesized cluster index IS and enlarged BTF image.

Examples of synthesized cluster indices IS as well as corresponding BTF images for both
tested materials compared with their original counterparts are shown in the second and third
column of figure 9.

6. Results

The proposed methods were applied to the BTF synthesis of two different types of smooth
lacquered wood. The original BTF tile of wood01 has size 122 × 125 and wood02 size 137 ×
142 pixels. The size of the synthesized normal-maps and subsequent index arrays in our
experiments was, for both these materials, 1024 × 1024 pixels.

An example of a single planar BTF image enlarged by the proposed method is shown in
the third column of figure 9. A comparison of the enlarged BTF data mapped onto part of a
car gearbox console and car seat with one BTF tile mapping is shown for both materials in
figures 10 and 11. The first column illustrates the disturbing effect of one BTF tile repetition,
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Figure 10. Results of the proposed BTF data enlargement method using both the 2D and 3D CAR models (the
third and fourth columns) mapped onto the console of a car gearbox in comparison with BTF tiling using one tile
(the first column) and two tiles (the second column) for two kinds of lacquered wood. For all test images the number
of clusters was fixed at nc = 256.

which persists even when two different BTF tiles are used, as is shown in the second column.
This effect will be more apparent for large virtual objects whose size is much bigger in
comparison with the structure details of the given BTF material, as is shown in figure 11.
The third and fourth columns of both figures show the performance of the proposed BTF
enlargement technique, i.e. 2D CAR and 3D CAR models, respectively. The proposed method
produces an efficient non-repetitive spatial representation of the wooden structure. Both tested
models provide comparable results. The smoothness of the synthesized images depends mainly
on the number of normal candidates nk and the shape of the causal neighbourhood used for
new index synthesis. These parameters have to be set carefully to avoid the presence of high
variance noise in the synthesized cluster index. For this reason a better or additional smoothing
constraint during index synthesis will be the main subject of our future research.

The time demands of the analytical part of the proposed method are not too important since
BTF segmentation, normal-map estimation, synthesis and, finally, estimated and synthesized
normal matching are off-line tasks. The most time-consuming part of the method is BTF tile
clustering, which takes approximately 1 h when using nc = 256 clusters for a BTF tile of
wood02, while the remaining analytical steps are much faster, depending on the size of the
original and required normal-map.

The synthesis of new cluster index IS of size 1024 × 1024 for a BTF tile of wood02 takes
approximately 15 min.All experiments were performed on anAMDAthlon personal computer,
1.9 GHz, 2 GB RAM. When the cluster index is synthesized to a size that enables us to cover a
given virtual object, the rendering of the BTF data using the corresponding clustered represen-
tation is very fast. Each pixel of the synthesized BTF image for the required illumination and
view direction is obtained by finding a RGB value in the cluster centre, looked up by indexing
in the synthesized cluster index (27). The BTF image for an arbitrary combination of illu-
mination and viewing angles was obtained by means of original BTF measurement direction
interpolation based on barycentric coordinates [22]. All processing was implemented directly
in graphics hardware, yielding an interactive rendering frame rate of about 20 frames/s. Two
screen shots of our BTF rendering software showing the proposed model of lacquered wood
BTF enlargement applied to the upper part of the gearbox console in a car interior are depicted
in figure 12.

The compression ratio of the proposed method for 256 clusters is approximately 1/200. For
example, the original size of 10 wood02 BTF tiles is 2.4 GB, while the parametric represen-
tation of the proposed model occupies only 9.3 MB. Despite providing such a compression
ratio the proposed method preserves the original reflectance dependent on the illuminating and
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Figure 11. Results of the proposed BTF data enlargement method using both the 2D and 3D CAR models (the third and fourth columns) mapped onto a car seat in comparison with BTF
tiling using one tile (the first column) and two tiles (the second column) for two kinds of lacquered wood. For all test images the number of clusters was fixed at nc = 256.
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Figure 12. A screen-shot from a UTIA real-time BTF rendering application of the car interior using the proposed BTF enlargement technique (3D CAR) applied to lacquered wood
materials on the upper console of the gearbox.
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viewing directions for individual cluster centres (BRDFs). This BRDF can subsequently be
approximated by means of standard empirical [23–26] or physical [27–31] reflectance models
to achieve even higher BTF compression ratios at the cost of a slightly higher computational
load required for BRDF cluster centre synthesis.

7. Summary and conclusions

This paper proposes two new techniques for seamless BTF data enlargement. The method
strictly separates the analytical (possibly off-line) part from the fast (possibly real-time) syn-
thesis part of the whole modelling process. BTF clustering allows us to arbitrarily trade-off the
compression ratio and visual quality based on application requirements. The method shows
the best performance for spatially random, i.e. non-regular, types of BTFs such as the tested
lacquered wood or leather, etc. The method enables fast seamless BTF data enlargement of
arbitrary size with minimal additional storage requirements since the number of clusters is
fixed.
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