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This paper presents an efficient algorithm for a special triangular linear system with Chebyshev coefficients.
We present two methods of derivations, the first is based on formulae where the nth power of x is solved
as the sum of Chebyshev polynomials and modified for a linear system. The second deduction is more
complex and is based on the Gauss–Banachiewicz decomposition for orthogonal polynomials and the
theory of hypergeometric functions which are well known in the context of orthogonal polynomials. The
proposed procedure involves O(nm) operations only, where n is matrix size of the triangular linear system
L and m is number of the nonzero elements of vector b. Memory requirements are O(m), and no recursion
formula is needed. The linear system is closely related to the optimal pulse-wide modulation problem.

Keywords: orthogonal Chebyshev polynomials; hypergeometric functions; linear system; optimal PWM
problem

1. Problem statement

Develop an algorithm with the complexity of O(nm) operations for the special triangular linear
system Lx = b:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0,0 0 0 0 . . . 0
0 t1,1 0 0 . . . 0

t2,0 0 t2,2 0 . . . 0
0 t3,1 0 t3,3 0
...

...
...

...
. . .

...

. . . tn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...

bm

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (1)

where ti,j is the j th coefficient of the Chebyshev polynomial of degree i and bi is an arbitrary
real number. Note that the standard recursive algorithm involves O(n2) operations.
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620 P. Kujan et al.

Figure 1. Solution for illustrative example – odd optimal PWM problem. (a) Example of odd symmetry 2π periodic
function f (t) = 2 sin t − sin 2t . (b) Optimal odd PWM waveform p(t) for generation of odd symmetry periodic signal
f (t). (c) Amplitude spectrum of p(t). (d) The solution for p(t) and f (t).

2. Motivation

The problem arises when looking for the optimal pulse-wide modulation (PWM) switching
sequence α1, . . . , αn such that the output PWM waveform p(t) has a required frequency spec-
trum, see [4,5,12]. The baseband frequency of p(t) is equal to the frequency spectrum of a given
f (t), and a certain number of the following higher harmonics are equal to zero.

In the illustrative example, the amplitude frequency spectrum of signal f (t) = 2 sin t − sin 2t

(Figure 1a) is {a1 = 2, a2 = −1} (i.e., the first and second harmonics; the following harmonics
are zero). The baseband frequency spectrum for p(t) (Figure 1b) is chosen in the same way as
the frequency spectrum f (t) and then the following six harmonics (from the third to the eighth)
are put equal to zero (Figure 1c). Thus, it is required that {b1 = 2, b2 = −1, b3 = . . . = b8 = 0}
holds for the first eight harmonics of p(t). The other higher harmonics p(t) that are impossi-
ble to change by computing of switching angles α1, . . . , α8 are {b9 = 4.06, b10 = 0.76, b11 =
0.79, b12 = −0.66, . . .}. The complete solution with numerical values is shown in Figure 1d.

The undesirable higher harmonics beyond the zero band are to be cancelled by a suitable filter.
Obviously, the wider the band of zero harmonics, the better the result of filtration will be achieved.
This demand calls for large systems of the type (1). In addition, for online implementation (e.g.,
in active filters, see [5,10]) fast calculation is required. A dedicated efficient algorithm for the
set (1), fully exploiting its structure, is therefore needed.

3. Preliminaries

3.1. Chebyshev polynomials of the first kind

Definition 3.1 (Chebyshev polynomial of the first kind [1, Chapter 22; 9]) The orthogonal
Chebyshev polynomials of the first kind Tn(x) are defined by the trigonometric identity

Tn(x) = cos(n arccos x) whence Tn(cos θ) = cos(nθ) (2)
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Integral Transforms and Special Functions 621

or, alternatively, by the three-term recurrence relation

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x) − Tn−1(x).

Remark 3.2 The first few Chebyshev polynomials of the first kind are

T0(x) = 1, T2(x) = −1 + 2x2, T4(x) = 1 − 8x2 + 8x4,

T1(x) = x, T3(x) = −3x + 4x3, T5(x) = 5x − 20x3 + 16x5.

Corollary 3.3 ([1, Chapter 22]) The Chebyshev polynomials Tn(x) satisfy various properties
and identities.

• The Chebyshev polynomials Tn(x) defined in terms of the sums

Tn(x) = n

2

�n/2�∑
r=0

(−1)r

n − r

(
n − r

r

)
(2x)n−2r . (3)

Therefore, the ith coefficient tn,i of n degree Chebyshev polynomial Tn(x) =∑n
i=0 tn,ix

i is

odd degree n : tn,i =
{

0 for i = 0, 2, 4, . . . , n − 1,

Kn,i for i = 1, 3, 5, . . . , n,
(4a)

even degree n : tn,i =
{

Kn,i for i = 0, 2, 4, . . . , n,

0 for i = 1, 3, 5, . . . , n − 1,
(4b)

where

Kn,i = 2i (−1)(n−i)/2 n

n + i

(
(n + i)/2

(n − i)/2

)
. (4c)

Thus, we can rewrite the previous formulae to the form

t2n−1,2i−1 = 22i−1(−1)n−i 2n − 1

2(n + i − 1)

(
n + i − 1

n − i

)
,

t2n,2i = 22i (−1)n−i n

n + i

(
n + i

n − i

)
, (5a)

t2n−1,2i−2 = t2n,2i−1 = 0, n = 1, 2, . . . , i = 1, 2, . . . , n,

t0,0 = 1. (5b)

• The orthogonality condition with respect to the weighting function w(x) = 1/
√

1 − x2 is

∫ 1

−1
Tm(x)Tn(x)w(x)dx =

⎧⎪⎨
⎪⎩

1

2
πδnm, m �= 0, n �= 0,

π, m = n = 0,

(6)

where δnm is the Kronecker delta.
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622 P. Kujan et al.

• The moments are

μi = L[xi] =
∫ 1

−1
xiw(x)dx =

⎧⎪⎨
⎪⎩

√
π

�(i/2 + 1/2)

�(i/2 + 1)
, i = 0, 2, 4, . . . ,

0, i = 1, 3, 5, . . . ,

(7)

where �(z) is Gamma function (see [p. 255–258] or [2]) and L[·] is a linear functional (see
[3, Chapter 2] or [8, Chapter 7]). Thus,

μ2i = 2−iπ
(2i − 1)!!

i! = 2−2i+1π

(
2i − 1

i − 1

)
, (8a)

μ2i+1 = 0, i = 0, 1, 2, . . . . (8b)

Note that L[Tm(x)Tn(x)] = ∫ 1
−1 Tm(x)Tn(x)w(x)dx.

Property 3.4 (Powers of x in terms of Tn(x) [9, Chapter 2.3.1]) The power xn can be expressed
in terms of the Chebyshev polynomials of degree up to n by the following formulas:

odd degree n: xn = 21−n

(n−1)/2∑
k=0

(
n

k

)
Tn−2k(x), (9a)

even degree n: xn = 2−n

(
n

n/2

)
T0(x) + 21−n

n/2−1∑
k=0

(
n

k

)
Tn−2k(x). (9b)

Proof See [9, Chapter 2.3.1]. �

3.2. Gauss–Banachiewicz decomposition

Theorem 3.5 (Gauss–Banachiewicz decomposition [3, p. 78]) The moments Hankel matrix

H =

⎡
⎢⎢⎢⎢⎣

μ0 μ1 · · · μk

μ1 . .
. ...

... . .
.

μ2k−1

μk · · · μ2k−1 μ2k

⎤
⎥⎥⎥⎥⎦

can be factored as LHLT = D, where for the orthogonal polynomial Tk(x) = tk,kx
k +

tk,k−1x
k−1 + . . . + tk,0 is

L =

⎡
⎢⎢⎢⎣

t0,0 0
t1,0 t1,1
...

...
. . .

tk,0 tk,1 . . . tk,k

⎤
⎥⎥⎥⎦

and D is diagonal matrix D = diag(L[T 2
0 (x)], L[T 2

1 (x)], L[T 2
2 (x)], . . . ,L[T 2

k (x)]).
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Integral Transforms and Special Functions 623

3.3. Special functions

Definition 3.6 (Hypergeometric functions [6]) A generalized hypergeometric function

pFq

[
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x
]

has a series representation

∞∑
k=0

ck

with ck+1/ck a rational function of k. The ratio ck+1/ck can be factored, and is usually written as

ck+1

ck

= (k + a1) · · · (k + ap)x

(k + b1) · · · (k + bq)(k + 1)
.

For c0 = 1, the previous equation can be solved for cn as

cn = (a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k!

and

pFq

[
a1, . . . , ap

b1, . . . , bq

∣∣∣∣ x
]

=
∞∑

k=0

(a1)k · · · (ap)k

(b1)k · · · (bq)k

xk

k! ,

where (x)n is the Pochhammer symbol.

Definition 3.7 (Pochhammer symbol [7]) The Pochhammer symbol (or shifted or rising or
upper factorial) is

(x)n = x(x + 1) · · · (x + n − 1) = �(x + n)

�(x)
for n ≥ 0.

Property 3.8 If x is a negative integer −m, then the Pochhammer symbol satisfies

(x)n = (−m)n = (−1)n(m − n + 1)n for m ≥ n, (10a)

(x)n = 0 for m < n. (10b)

Theorem 3.9 (Saalschütz’s theorem [11])

3F2

[
a, b, −n

c, 1 + a + b − c − n

∣∣∣∣ 1
]

= (c − a)n(c − b)n

(c)n(c − a − b)n
,

where n is a positive integer.
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624 P. Kujan et al.

4. Solving the linear system with Chebyshev coefficients

Proposition 4.1 [Linear system with Chebyshev coefficients] Let us have a linear system

Lx = b, (11)

where L is a lower triangular matrix with Chebyshev coefficients and the right-hand side is a
vector b in the form

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0,0 0 0 0 . . . 0
0 t1,1 0 0 . . . 0

t2,0 0 t2,2 0 . . . 0
0 t3,1 0 t3,3 0
...

...
...

...
. . .

...

. . . tn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...

bm

0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

tk,i is the ith coefficient of Equation (4) of the Chebyshev polynomial Tk(x) of degree k and
bi, i = 0, 1, . . . , m(m ≤ n) is an arbitrary real number and bi = 0, i = m + 1, . . . , n. Then the
solution x = (x0, x1, x2, . . . , xn)

T of this system is

x2i = 2−2i

(
2i

i

)
b0 + 21−2i

min{i,�m/2�}∑
k=1

(
2i

i − k

)
b2k, i = 0, 1, . . . ,

⌊n

2

⌋
, (12a)

x2i−1 = 22−2i

min{i,	m/2
}∑
k=1

(
2i − 1

i − k

)
b2k−1, i = 1, . . . ,

⌈n

2

⌉
. (12b)

We provide two proofs: the first one is a direct application of the Property 3.4, it is intuitive and
easy to understand; the second one is more complex but it gives a connection between Chebyshev
orthogonal polynomials, Gauss–Banachiewicz decomposition and hypergeometric functions, for
more details see [8].

Proof of Proposition 4.1 (1) First, for odd n according to Equation (9a) we have

xn = 21−n

(n−1)/2∑
k=0

(
n

k

)
Tn−2k(x),

where we replaced the ith power of x in Chebyshev polynomials by variable xi, thus Tn−2k(x) =∑n−2k
j=0 tn−2k,j xj . But the Tn−2k(x) is the (n − 2k)th row in matrix L in Equation (11) and is equal

to bn−2k, thus we can directly solve the unknown variable xn as xn = 21−n
∑(n−1)/2

k=0

(
n

k

)
bn−2k.

According to the assumption that n is an odd integer, we can rewrite this solution as the following
expression x2i−1 = 2−2i+2∑i−1

k=0

(2i−1
k

)
b2(i−k)−1 and if we take the fact that for n − 2k > m is

bn−2k = 0 and re-index k in the sum

22i−2x2i−1 =
i−1∑
k=0

(
2i − 1

−(i − k) + i

)
b2(i−k)−1 = |i − k = m|

=
i−m=i−1∑
i−m=0

(
2i − 1

i − m

)
b2m−1 =

i∑
m=1

(
2i − 1

i − m

)
b2m−1,

we exactly obtained Equation (12b). Similarly, according to Equation (9b) we obtain the solution
for even n.
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Integral Transforms and Special Functions 625

(2) As the matrix L satisfies the conditions of the Theorem 3.5, we introduce a new variable y

and put x = HLTy. Then Lx = LHLTy = Dy = b recall that

H =

⎡
⎢⎢⎢⎢⎣

μ0 μ1 · · · μn

μ1 . .
. ...

... . .
.

μ2n−1

μn · · · μ2n−1 μ2n

⎤
⎥⎥⎥⎥⎦ ,

where μi’s are given by Equation (8) and according to Equation (6)

D = diag(d0, d1, . . . , dn), where d0 = π and di = π

2
, i = 1, . . . , n.

The solution of the diagonal system Dy = b is straightforward, y = (2/π)((1/2)b0, b1, . . . , bm,

0, . . . , 0). Now we compute the product HLT and denote it as the matrix C of the size n + 1 ×
n + 1

C = (c)ij

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ0t0,0 0 μ0t2,0 + μ2t2,2 0 μ0t4,0 + μ2t4,2 + μ4t4,4 . . .

0 μ2t1,1 0 μ2t3,1 + μ4t3,3 0 . . .

μ2t0,0 0 μ2t2,0 + μ4t2,2 0 μ2t4,0 + μ4t4,2 + μ6t4,4 . . .

0 μ4t1,1 0 μ4t3,1 + μ6t3,3 0 . . .

μ4t0,0 0 μ4t2,0 + μ6t2,2 0 μ4t4,0 + μ6t4,2 + μ8t4,4 . . .
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Generally, the (c)ij element of the matrix C

c2i−1,2j−1 =
j−1∑
k=0

μ2(k+i−1)t2(j−1),2k, i, j = 1, 2, . . . ,
⌈n

2

⌉
, (13a)

c2i,2j =
j∑

k=1

μ2(k+i−1)t2j−1,2k−1, i, j = 1, 2, . . . ,
⌊n

2

⌋
, (13b)

c2i,2j−1 = 0, i = 1, 2, . . . ,
⌊n

2

⌋
, j = 1, 2, . . . ,

⌈n

2

⌉
, (13c)

c2i−1,2j = 0, i = 1, 2, . . . ,
⌈n

2

⌉
, j = 1, 2, . . . ,

⌊n

2

⌊
(13d)

and after substitution of Equations (5) and (8) it follows that

c2i−1,2j−1 = (−1)j−12−2i+3π(j − 1)S ′
ij , i, j = 1, 2, . . . ,

⌈n

2

⌉
,

with S ′
ij =

j−1∑
k=0

(−1)k
1

j + k − 1

(
2(k + i) − 3

k + i − 2

)(
j + k − 1

j − k − 1

)
,

(14a)

c2i,2j = (−1)j 2−2i+2π(2j − 1)S ′′
ij , i, j = 1, 2, . . . ,

⌊n

2

⌋
,

with S ′′
ij =

j∑
k=1

(−1)k
1

2(j + k − 1)

(
2(k + i) − 3

k + i − 2

)(
j + k − 1

j − k

)
.

(14b)
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626 P. Kujan et al.

The sums S ′
ij , S ′′

ij in the previous expressions are binomial sums and according to the
Definition 3.6, we can rewrite it as the hypergeometric function 3F2:

S1 = 22i−3

(j − 1)
√

π

�(i − 1/2)

�(i)
3F2

⎡
⎢⎣i − 1

2
, j − 1, −(j − 1)

1

2
, i

∣∣∣∣∣∣∣ 1
⎤
⎥⎦ , (15a)

S2 = −22i−2

√
π

�(i + 1/2)

�(i + 1)
3F2

⎡
⎢⎣i + 1

2
, j, −(j − 1)

3

2
, i + 1

∣∣∣∣∣∣∣ 1
⎤
⎥⎦ . (15b)

The obtained hypergeometric functions correspond to the conditions of the the Theorem 3.9,
therefore using Equation (10) we have

S1 = 22i−3

(j − 1)
√

π

�(i − 1/2)

�(i)

(−(i − 1))j−1(3/2 − j)j−1

(1/2)j−1(−(i + j − 2))j−1

= 22i−3

(j − 1)
√

π

�(i − 1/2)

�(i)

(i − j + 1)j−1(3/2 − j)j−1

(1/2)j−1(i)j−1)
, (16a)

S2 = −22i−2

√
π

�(i + 1/2)

�(i + 1)

(−(i − 1))j−1(−(j − 3/2))j−1

(3/2)j−1(−(i + j − 1))j−1

= −22i−2

√
π

�(i + 1/2)

�(i + 1)

(−1)j−1(i − j + 1)j−1(1/2)j−1

(3/2)j−1(i + 1)j−1
, (16b)

and consequently

c2i−1,2j−1 = 22−2iπ
�(2i − 1)

�(i − j + 1)�(i + j − 1)
= 22−2iπ

(2i − 2)!
(i − j)!(i + j − 2)!

= 22−2iπ

(
2i − 2

i − j

)
, i, j = 1, 2, . . . ,

⌈n

2

⌉
, (17a)

c2i,2j = 21−2iπ
�(2i)

�(i − j + 1)�(i + j)
= 21−2iπ

(2i − 1)!
(i − j)!(i + j − 1)!

= 21−2iπ

(
2i − 1

i − j

)
, i, j = 1, 2, . . . ,

⌊n

2

⌋
. (17b)

As the solution (17) contains binomial coefficient
(

...

i−j

)
, c2i−1,2j−1 = c2i,2j = 0 for all j > i.

Finally, we obtain

x = Cy = 2

π

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1,1 0 0 0 . . . 0
0 c2,2 0 0 . . . 0

c3,1 0 c3,3 0 . . . 0
0 c4,2 0 c4,4 . . . 0
...

...
...

...
. . . 0

0 cn,2 0 cn,4 cn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2b0

b1
...

bm

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and further

x2i = 1

π
c2i+1,1b0 + 2

π

min{i,�m/2�}∑
k=1

c2i+1,2k+1b2k, i = 0, 1, . . . ,
⌊n

2

⌋
,

x2i−1 = 2

π

min{i,	m/2
}∑
k=1

c2i,2kb2k−1, i = 1, . . . ,
⌈n

2

⌉
.

After the substitution of Equation (17) we arrive at expressions (12). �

Remark 4.2 The result of Equation (12) consists of two independent solutions (this is also clear
directly from the matrix L in Equation (11)). The first solution of Equation (12a) corresponds to
even coefficients of x given by the linear system (matrices in this form are written for odd m and
odd n)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t0,0 0 0 . . . 0 0
t2,0 t2,2 0 . . . 0 0
t4,0 t4,2 t4,4 0 0
...

...
...

. . .
...

...

tn−3,0 tn−3,2 tn−3,4 . . . tn−3,n−3 0
tn−1,0 tn−1,2 tn−1,4 . . . tn−3,n−3 tn−1,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x0

x2

x4
...

xn−3

xn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b2
...

bm−1

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The second solution of Equation (12b) correspond to odd coefficients of x

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

t1,1 0 0 . . . 0 0
t3,1 t3,3 0 . . . 0 0
t5,1 t5,3 t5,5 0 0
...

...
...

. . .
...

...

tn−2,1 tn−2,3 tn−2,5 . . . tn−2,n−2 0
tn,1 tn,3 tn,5 . . . tn,n−2 tn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x3

x5
...

xn−2

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b3
...

bm

0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (18)

Remark 4.3 Special case for m = 1. We obtain the solution directly from Equation (12) and it
reads

x2i = 2−2i

(
2i

i

)
b0, i = 0, 1, 2, . . . ,

⌊n

2

⌋
,

x2i−1 = 22(1−i)

(
2i − 1

i − 1

)
b1, i = 1, 2, 3, . . . ,

⌈n

2

⌉
.

The last expression is the ‘sum of powers’ for optimal PWM problem for single phase inverter;
see [5].
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5. Conclusion and algorithm complexity

The presented algorithm is nonrecursive and requires only O(nm) operations (additions and
multiplications) compared with the standard recursive procedure for general triangular system,

xi = bi −∑i−1
j=1 ti,j xj

ti,i
, i = 1, 2, . . . , n,

which involves O(n2) operations. Memory requirements are determined only by the vector b, and
only O(m) memory space is therefore required. Generating and storing of Chebyshev coefficients
takes no extra memory.
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