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Abstract: In this article, an efficient algorithm for an optimal decision strategy approximation
is introduced. It approximates the Bellman equation without omitting the principal uncertainty
stemming from incomplete knowledge. Thus, the approximated optimal strategy retains the
ability to constantly verify the current knowledge. An integral part of the proposed solution
is a reduction in memory demands using HDMR approximation. The result of this method
is a linear algebraic system for an approximated upper bound on the Bellman function. The
analysis of the approximation error has not been considered here. One illustrative example has
been completely resolved.
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1. MOTIVATION

The main focus of this article is to develop an approxima-
tion tool suitable for enlarging the class of computation-
ally feasible decision-making problems. This work copes
with the principal problem within the stochastic dynamic
programming, which is known as curse of dimensional-
ity, see [3]. In the contemporary state of arts, there is a
lack of approximation techniques capable of encompassing
problems with a larger decision-making horizon. The aim
of this work is to reduce memory demands necessary to
store the optimal strategy. To this end, properties of an
approximative tool called High Dimensional Model Repre-
sentations (thereinafter ”HDMR”) are promising. It was
stimulated by applications in chemistry, see [1], which
focused on reducing enormous memory demands of the
involved models. In its background, there stands a simple
observation: only low-order correlations amongst the input
variables have a significant impact upon the outputs of a
typical model.

A general form of a HDMR expansion reads

g(x)≈ g̃(x) ≡ g̃(x1, x2, . . . , xµ) = (1)

g̃0 +

µ
∑

m=1

g̃m(xm) +

µ
∑

m=1

m−1
∑

n=1

g̃mn(xm, xn) + . . .

Here, a zero-order component g̃∅ denotes a constant scalar
value over the domain of g(x); the first-order components
g̃m(xm) describe an independent effect of each variable
xm; the second-order component g̃mn(xm, xn) represents
the joint effect of the variables xm and xn and so on.
The experience shows that even the low-order case often
provides a sufficient description of g(x).

Such a function approximation (representation) yields two
main advantages. The first one is the data reduction. The
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memory space necessary to store all the values of the orig-
inal function g(x) grows exponentially with the dimension
µ, whereas the size growth of decomposition components is
just polynomial in µ. This property helps us to cope with
high-dimensional problems of the real world. The second
advantage is the reduction of computational complexity.
In general, it allows us to split a high-dimensional linear
problem into several low-dimensional subproblems.

The outline of this work is as follows. Section 2 deals with
the current state of art in the decision making theory.
A central point here is the presentation of the Bellman
equation with its notorious difficulties, mainly the problem
of a rapidly growing domain of the Bellman function. To
cope with this inconvenience, an approximative technique
of HDMR is introduced in detail within Section 3. Also, a
system of linear equation determining an optimal function
approximation is derived here. Its linearity does not match
well with the non-linear Bellman equation. Thus, a linear
equation for an upper bound on the Bellman function is de-
rived, see Section 4. Connecting it with HDMR approxima-
tion, a viable technique for approximative decision making
is obtained. In Section 5, there are concise instructions
for the implementation of this approximation technique
in real applications. As an illustration, one toy example is
completely resolved. Section 6 is devoted to the conclusion.

Throughout this work, a few general conventions are
followed. The domain of the variable x is denoted X,
x ∈ X. |X| denotes the finite cardinality of the countable
set X or its Lebesque measure in case it is not countable.
Next, xt is the quantity x at the discrete time instant
labeled by t ∈ T . The letter ”f” is reserved for a
probability density function (pdf). Its specific meaning is
given through the names of its arguments. The same letter
is used for conditioned pdfs, arguments in condition are
separated by ”—” in the argument list. Knowing f(x|y),
it is possible to introduce the expected value of the variable
x conditioned by y
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E [x | y ] ≡

∫

X

x f(x|y) dx

For the vector x ∈ X, X ⊂ Rµ, and m ∈ M ≡ {1, . . . , µ},
xm denotes its m-th coordinate. Therefore, it reads x =
(x1, . . . , xµ). Taking some N = {n1, . . . , nν} ⊂ M , a
projection x/N ∈ Rν is defined for all x = (x1, . . . , xµ) ∈ X
in this manner x/N ≡ (xn1 , . . . , xnν ) ∈ Rν . A HDMR

approximation of the function h(x) is marked by h̃(x). For
the domain of h(x), dom(h) is used.

2. DECISION MAKING THEORY

Within this section, the classical results are briefly sum-
marized together with their classical troubles. A detailed
discussion is to be found in [4], for example.

The decision-making task consists in selecting the decision-
maker’s strategy in order to reach decision-maker’s aim
with respect to the part of the world (so-called system).
The decision maker observes or influences the system
over the finite decision making horizon τ < ∞. The
data (system output) observed at the time instance t ∈
T ≡ {1, . . . , τ} is denoted by yt ∈ Yt. It provides the
decision maker with the information about the system
behavior. Analogously, the decisions (actions) are denoted
as at ∈ At. It is the value that can be directly chosen by
the decision maker for reaching decision-maker’s aims. The
strategy {Rt}t∈T is a collection of mappings transforming
the current experience d(t − 1) ≡ (yt−1, at−1, . . . , y1, a1)
into the choice of the next decision at ∈ At.

The next thing to do is to formalize a degree of achieve-
ments of the decision-maker’s aims. The idea of loss func-
tion is promising. A loss value is assigned to each possible
system trajectory d(τ) respecting just one rule: the more
suitable the trajectory is, the lower loss value it possesses.
This way, the loss function Z(d(τ)) is obtained. Often,
a less general concept of the additive loss function is
introduced, i.e., the case when the losses accumulate with
time

Z(d(τ)) =

τ
∑

t=1

zt (at, yt) where zt(at, yt) ≥ 0 (2)

Now, it is necessary to describe the involved system. In
this work, a stochastic approach is held. Thus, the system
is completely described in a probabilistic manner by the
following collection of pdfs called the outer model of a
system

{f(yt|at, d(t − 1))}t∈T (3)

There are many ways how to find these formulae, see [5].

Knowing the loss function (2) altogether with the outer
model (3), the optimal strategy is determined by the
Bellman theorem. It claims: the strategy {Rt}t∈T selecting

such decisions aopt
t that aopt

t minimize

Vt−1(d(t − 1)) =

min
at∈At

E [ zt(yt, at) + Vt(d(t)) | at, d(t − 1) ] (4)

at all times t ∈ T , minimizes also the expected value of
the overall loss Z(d(τ)) provided the boundary condition
Vτ ≡ 0 is satisfied.

The essential problem is to evaluate the Bellman function
Vt for all t ∈ T . Its exact recursive calculation is computa-
tionally infeasible in the majority of practical applications
for the reason of geometrically growing size of its domain
with the increasing decision making horizon τ . This paper
aims at reduction in the memory demands necessary to
represent the approximated strategy.

2.1 Sufficient Statistic

When operating with a large amount of data, it is mean-
ingful to compress them into a set of a smaller dimension
as follows

σt ≡ σt(d(t)) (5)

Such mapping is called statistic. For the random vari-
able xt, the statistic σt is sufficient if there exists
f(xt|σt(d(t)), t) satisfying the following condition for all
the times t ∈ T and all the possible trajectories d(t), t ∈ T

f(xt|d(t)) = f(xt|σt(d(t)), t)

The explicit appearance of the time coordinate in the
condition is for the sake of simplicity in sequel.

The collection of the following mappings {St}t∈T is nec-
essary to effectively update the statistic. S1(y1, a1) ≡
σ1(y1, a1), and for all t ∈ {2, . . . , τ}, the new data yt ∈ Yt

observed after the decision at ∈ At is carried out and the
old statistic value σt−1 ≡ σt−1(d(t − 1)), it reads

St(yt, at, σt−1) ≡ σt(d(t)) (6)

In this article, the function approximation will be searched
over a statistic domain. Therefore, the knowledge of the
exact statistic domain Σt for all the times t ∈ T is
necessary. For Σ1, it obviously holds Σ1 ≡ Σ1(Y1, A1),
and for all t ∈ {2, . . . , τ}, the domains are introduced in a
recursive manner

Σt ≡ St(Yt, At,Σt−1)

In the context of the Bellman equation (4), the existence of
the statistic {σt ∈ Σt}t∈T sufficient for the system model
(3) is assumed. It suggests to rewrite the Bellman equation
valid over all Σt, t ∈ T , using a shortcut

σt−1 ≡ σt−1(d(t − 1))

with the condition Vτ ≡ 0. For all t ∈ {2, . . . , τ} it holds

Vt−1(σt−1) = (7)

min
at∈At

E [ zt(yt, at) + Vt(St(yt, at, σt−1)) | at, σt−1, t − 1 ]

The previous compression of the domain of the Bellman
function is a crucial step towards the solution of the
problem.

3. HIGH DIMENSIONAL MODEL
REPRESENTATION

This section is to prepare a HDMR approximation tech-
nique to reduce memory demands to represent the Bellman
function defined by (7). There are many ways how to
construct the decomposition like (1), see [1]. To reduce
this ambiguity, it is necessary to formalize the desired
properties of the decomposition.

The function Hilbert space L2(X) is an useful concept
for the function approximation. Generally, it is a space
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of real functions defined over X with the finite norm
‖g‖ ≡

√

〈g , g〉 inducted by the following scalar product

〈g , h〉X ≡

∫

X

g(x)h(x) dx (8)

The optimal HDMR decomposition g̃ of the function g ∈
L2(X) is a minimizer of an approximation error evaluated
in this norm, i.e., it is a function minimizing ‖g − g̃‖.

Partial Constancy of Decomposition Components

To get rid of the ellipsis ”. . .” in (1), it is suitable to
index decomposition components by elements of a general
index set. Consider µ ∈ N equal to the dimension of X,
X ⊂ Rµ. Introducing M ≡ {1, . . . , µ}, the decomposition
component can be addressed by an element of the following
index set

D ( {N |N ⊂ M}

The set’s elements are the indices determining which
variables the decomposition component depends on. This
way, it is possible to prescribe a different component order
for different variables (or groups of variables). It could
be useful if there is some a priori information on their
influence. The resulting HDMR decomposition of g(x) has
the following general form

g̃(x) ≡
∑

K∈D

g̃K(x) (9)

Obviously, considering decomposition components within
the space L2(X) is not strict enough. For any K ∈ D, the
HDMR decomposition component g̃K(x) must not depend
on xm for m ∈ M \ K. A space of constant functions will
be useful. For all K ⊂ M , they can be introduced as

CK(X) ≡ {h |dom(h) = X, (10)

∀
x,y∈X

(x/K = y/K → h(x) = h(y))}

These functions are constant in all the variables but xk,
k ∈ K. Such a restriction is non-optional when talking
about the HDMR approximation.

Support Restriction of Decomposition Components

Another restriction is necessary to guarantee the unique-
ness of each separate decomposition component. The prob-
lem stems from the fact that only the overall sum of
the decomposition components enters the minimization
task. For instance, the constant value g̃∅ can be nullified
and added to any higher-order decomposition component.
There are many ways how to manage this ambiguity. The
one proposed here aims to decrease the resulting memory.
The key idea is to nullify the decomposition components
on the specific border parts of their domains. Thus, for
K ⊂ M a XK ⊂ X is defined

XK ≡
⋂

m∈M\K

{

x ∈ X

∣

∣

∣

∣

xm > min
y∈X

ym

}

(11)

Reminding the concept of the function support

supp(h) ≡ {x ∈ dom(h), h(x) 6= 0}

the supports of decomposition components are reduced in
the way that for all K ∈ D it reads supp(g̃K) ⊂ XK . With
the following condition put on D

∀
K∈D

∀
L⊂K

L ∈ D (12)

the uniqueness of each separate decomposition component
g̃K , K ∈ D, is guaranteed. It is an easy exercise to
verify this fact. The resulting decomposition would give
the same error of approximation with or without these
conditions. Next, it is necessary to take the general optimal
decomposition {g̃K}K∈D, to complete the index set D in
the sense of (12), and, by induction from the largest to the
lowest component orders to restrict their support appro-
priately. The only thing to take deal with is the overall sum
of the components, which have to be fixed during these
operations. Within this process, the exact value of each
restricted component is directly calculated, i.e., the collec-
tion of the restricted components is determined uniquely.

A small example will help to clarify the used notation. If
the aim is to obtain just the first order decomposition of
the function g(x1, x2, x3), dom(g) = X1 × X2 × X3 ⊂ R3,
the following choice of an index set is the right one

D = {∅, {1}, {2}, {3}}

Then, g is going to be approximated in this way

g̃(x1, x2, x3) ≡ g̃∅ + g̃1(x1) + g̃2(x2) + g̃3(x3)

Compare with the general form (9). If a hypothesis exists
that the biggest influence originates from the cooperation
of x2 with x3, an addition of the set {2, 3} into the index
set D is a good idea. It would change the searched HDMR
decomposition into this form

g̃∅ + g̃1(x1) + g̃2(x2) + g̃3(x3) + g̃23(x2, x3)

Afterwards, the presence of the second-order decomposi-
tion component g̃23(x2, x3) should result in a noticeable
decrease in the approximation error. For the purpose of
readability, g̃{2,3}(x2, x3) is shorten into g̃23(x2, x3), etc.

At the moment, the main function spaces are defined for
any K ⊂ M in this way

HK(X) ≡ {h ∈ L2(X) ∩ CK(X) | supp(h) ⊂ XK} (13)

where CK(X) is defined by (10). The functions within this
space depend only on xk for k ∈ K and, moreover, they
are nullified on the part of the border of their domains,
see (11). It leads to the observation that all the (possibly)
non-zero values of h ∈ HK(X) are fully determined by its
values on the following set X⊥

K ⊂ R|K|

X⊥
K ≡ {x/K |x ∈ XK ⊂ Rµ} (14)

This definition is important in the next section.

3.1 Optimality Conditions

Taking g̃K ∈ HK(X), K ∈ D, for the optimal decomposi-
tion g̃ defined in (9) it holds

g̃ ∈
⋃

K∈D

HK(X)

On the right hand side, there is the closed subspace of
L2(X) and therefore a classical result for projection on
the closed subspace of the Hilbert space can be applied.
It guarantees the existence and uniqueness of the function
g̃ minimizing the approximation error ‖g − g̃‖. And more,
it prescribes conditions for the optimal decomposition g̃
defined in (9). For all K ∈ D and all h ∈ HK(X), it holds

〈 g̃ − g , h〉 = 0
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According to the definition of the scalar product, see (8),
this equation reads

∫

X

(g̃(x) − g(x))h(x) dx = 0 (15)

The Dirac distribution δy, y ∈ R, denotes a linear func-
tional defined over a space of all real functions. Consider
a real function p(x), it operates in this way

δy[p] ≡

∫

R

δy(x) p(x) dx ≡ p(y)

Its extension to a higher dimension is straightforward.
Its integral, formally uncorrect representation however
provides better readability for the following text. Note
that, if necessary, it could be formalized directly by means
of the theory of distribution.

The previously written optimality conditions (15) are valid
for all K ∈ D and for all the test functions h ∈ HK(X).
To rewrite them in the δ-distribution formalism, it is
necessary to think over an effective domain of h carefully.
Formerly, it was deduced that such a function is fully
determined by its values on X⊥

K , see (14). On that account,
a more complex distribution δK,y is defined for all K ∈ D
and all y ∈ X⊥

K in this way

δK,y(x) ≡ δy(x/K)

Next, considering the δ-distribution index as an element
of

I ≡
{

(K, y) |K ∈ D, y ∈ X⊥
K

}

(16)

it is possible to rewrite the previous optimality conditions
(15) in the equivalent form valid for all κ ∈ I

∫

X

(g̃(x) − g(x)) δκ(x) dx = 0

Expanding the HDMR approximation g̃ in accordance
with its definition, see (9), the last equations turn into

∑

L∈D

∫

X

g̃L(x) δκ(x) dx =

∫

X

g(x) δκ(x) dx (17)

Again, considering the support of the decomposition com-
ponents altogether with its constancy in some variables,
see (13), this system could be represented by the linear
operators P , R and the system of equations valid for all
κ ∈ I

∑

L∈D

∫

X⊥

L

Pκ,(L,x) g̃L(x) dx = Rκ[g] (18)

where for operator elements Pκ,λ, resp. Rκ[g], and all
κ, λ ∈ I it holds

Pκ,λ ≡

∫

X

δλ(x) δκ(x) dx (19)

Rκ[g]≡

∫

X

g(x) δκ(x) dx (20)

In sequel, the linear system (18) can be written

P ⋆ g̃ = R[g] (21)

This is a linear system determining precisely one optimal
HDMR decomposition of g minimizing its approximation
error in the norm of L2(X). From the numerical point of
view, an important feature of this system is the symmetry
of the operator P .

4. STOCHASTIC DYNAMIC PROGRAMMING
APPROXIMATION

In the previous section, the HDMR tool was introduced.
It is based on linear equations determining the optimal
decomposition (21), whereas the Bellman equation (7) is
highly nonlinear due to the operator of minimization. This
fact obstructs the direct use of the HDMR. For that reason,
it is necessary to find some linear approximation of the
Bellman equation first.

As a mean value of some function has to be higher or equal
to its minimum, the following upper estimate holds for all
t ∈ {2, . . . , τ}, all σt−1 ∈ Σt−1 and the Bellman function
defined in (7)

Vt−1(σt−1) ≤
1

|At|
×

∫

At

E [ zt(yt, at) + Vt(St(yt, at, σt−1)) | at, σt−1, t − 1 ] dat

This inequality can be rewritten in a more compact way by
introducing a few shortcuts. At first, the following uniform
pdf will be useful f(at|σt−1, t − 1) ≡ 1

|At|
. It is a mere

shortcut, but it could be also interpreted as the simplest
possible optimal strategy predictor. It permits to introduce
Zt(σ), the function evaluating expected one-step-ahead
loss

Zt(σ) ≡ E [ zt+1(yt+1, at+1) |σ, t ]

Then, introducing the following conditioned pdf

f(σt+1|yt+1, at+1, σt) ≡ δσt+1
(St+1(yt+1, at+1, σt))

representing a model of statistic dynamic, and using the
chain rule, see for instance [5], gives the pdf

f(σt+1|σt, t) ≡

∫

Yt+1

∫

At+1

f(σt+1|yt+1, at+1, σt, t) ×

f(yt+1|at+1, σt, t) × f(at+1|σt, t) dat+1 dyt+1

Now, the previous inequality can be rewritten as follows

Vt−1(σt−1) ≤ Zt−1(σt−1) + E [Vt(σt) |σt−1, t − 1 ]

Thanks to the recursive nature of the Bellman equation,
see (7), this inequality spreads over the whole domain of V .
Considering just the equality part, it turns into a recursive
equation for a function U , which is an upper bound on the
Bellman function

Ut−1(σt−1) = Zt−1(σt−1) + E [Ut(σt) |σt−1, t − 1 ] (22)

It is a linear equation, and therefore it can be solved easier
than the exact Bellman equation.

With the knowledge of U , the approximated optimal
decision at the time step t ∈ T is aopt

t ∈ At satisfying

aopt
t = argmin

at∈At

E [ zt(yt, at) + Ut(St(yt, at, σt−1)) | at, σt−1, t ]

Here, again the shortcut σt−1 ≡ σt−1(d(t − 1)) was used.

4.1 HDMR-based Approximation

The linearity of equation (22), which describes the upper
bound on the Bellman function U , allows applying the
HDMR approximation directly. For all the times t ∈ T , the
optimal HDMR decomposition component Ũt,K , K ∈ D,
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has to be searched within HK(Σt). Firstly, the common
index set M ≡ {1, . . . , µ} is selected obeying the condition

⋃

t∈T

Σt ⊂ Rµ

Next, an appropriate set of the decomposition components
D is chosen satisfying (12). Its choice fully determines a
structure of the following approximation. Some a priori
knowledge can be applied here, or all the components can
be selected up to the same order. The typical choice is
the second order decomposition, i.e., the case when D is
chosen as follows

D = {∅} ∪ {{m}|m ∈ M} ∪ {{m, n}|m, n ∈ M, m < n}

Finally, it is necessary to prepare the index sets It, t ∈ T ,
see (16). Not only the index set D, bud also a geometry of
each approximation domain Σt plays a role here.

Respecting the recursive nature of equation (22), and also
the border condition Uτ ≡ 0, it is necessary to start from
t = τ − 1, find the collection {Ũτ−1,K}K∈D determining
approximated values of U at the time t = τ −1, decrease t
by one and repeat this procedure until t = 1. Inserting (22)
into (21) and respecting condition Uτ ≡ 0 the following
equation is obtained

Pτ−1 ⋆ Ũτ−1 = Rτ−1 [Zτ−1]

with Pτ−1, resp. Rτ−1, defined analogously to (19), resp.

(20). Its solution is the collection {Ũτ−1,K}K∈D fully
determining the HDMR approximation of the upper bound
on the Bellman function for time t = τ − 1.

Now, knowing {Ũt+1,K}K∈D for some t + 1 ∈ T , the

analogous procedure is performed to find {Ũt,K}K∈D. It
leads to the equation

Pt ⋆ Ũt = Rt [Zt + E [Ut+1(σt+1) |σ, t ]]

This equation is the exact equation for the optimal HDMR
decomposition components of Ũt having only one, but
crucial problem. On the right hand side, there occurs
the exact value of Ut+1(σt+1), which is unknown at the
moment. To avoid this, again, its HDMR decomposition

Ũt+1(σ) ≡
∑

K∈D

Ũt+1,K(σ)

is substituted instead. This way, the previous equation
turns into

Pt ⋆ Ũt = Rt [Zt] + Qt+1 ⋆ Ũt+1 (23)

where

Qt+1 ⋆ Ũt+1 ≡ Rt

[

∑

K∈D

E
[

Ũt+1,K(σt+1)
∣

∣

∣
σ, t
]

]

Reminding the definition of R[g], see (20), altogether with
the detailed meaning of the ”starred” product, see (21),
for all κ ∈ It, λ ∈ It+1 and the operator element Qt+1,κ,λ

it holds

Qt+1,κ,λ =

∫

Σt+1

∫

Σt

f(σt+1|σ, t) δκ(σ) dσ δλ(σt+1) dσt+1

The solution of the series of linear systems (23) is equiv-

alent to finding approximative solution Ũ of the upper
bound of the Bellman equation (22) using the HDMR
technique.

5. TOY PROBLEM EXAMPLE

Tossing of an unknown coin is an appropriate example to
depict the core of this work. A decision maker plays a
hazard game with a (two-sided) coin. Only one side is the
winning one. The coin is unfair and pay-off probabilities
of its sides are unknown. Also, it is not clear whether the
result of tossing depends on the starting orientation of the
coin. The only, but crucial knowledge is that the pay-off
probabilities are fixed, i.e., the coin is rigid.

The decision-maker’s problem is: how to find the best
strategy to pick the winning side of the coin? Even though
this problem could be formulated so easily, it is a real
issue for a longer game horizon as it is hard to balance
exploration and exploitation. Winning in the first round
does not imply the decision maker should choose the same
coin side as it prevents the pay-off probability of the
opposite coin side.

Consider the finite decision making horizon of τ steps.
Using the previous notation, yt represents the observed
value (upper side of the coin when it has landed) for each
time step and at decision (selected coin side before tossing)
of a player (decision maker). As the game rules are fixed
and even the coin itself is rigid, the range of system input
and/or output is still the same. For all t ∈ T , it holds
at ∈ At ≡ A = {0, 1} and similarly yt ∈ Yt ≡ Y = {0, 1},
where ”0” stands for the ”Tails” side of the coin and ”1”
for the ”Heads” side.

Note, for computation of the expected value in (4), the
knowledge of the outer system model (3) is crucial. It
can be composed of two separate probability densities,
a parametric system model pdf and a describing internal
unknown parameter (pay-off probability of coin sides). For
more detailed information, see [2].

Before writing the resulting formulae, it is necessary to
introduce a sufficient statistic. Introducing the Kronecker’s
symbol for j, k ∈ N, δj,k ≡ 1 if j = k and δj,k ≡ 0
otherwise, a sufficient statistic can be identified with a
three-dimensional vector σt(d(t)) = (σ1

t , σ2
t , σ3

t ) as follows

σt ≡

(

t
∑

i=1

δyi,0 δai,0,
t
∑

i=1

δyi,0 δai,1,
t
∑

i=1

δyi,1 δai,0

)

These values are simply the sums of different game results.
For instance, σ1

t equals to the count of the previous game
rounds starting with the coin on the ”Tails” side (denoted
by 0) and landing on the same side. Then, the outer system
model is

f(0|0, σ, t) =
σ1

t + 1

σ1
t + σ3

t + 2

f(1|0, σ, t) =
σ3

t + 1

σ1
t + σ3

t + 2

f(0|1, σ, t) =
σ2

t + 1

t + 2 − σ1
t − σ3

t

f(1|1, σ, t) =
t + 1 − σ1

t − σ2
t − σ3

t

t + 2 − σ1
t − σ3

t

Naturally, for the statistic values it holds σ1
t +σ2

t +σ3
t ≤ t.

This constraint implies these statistic domains Σt, t ∈ T
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Σt ≡
{

(σ1
t , σ2

t , σ3
t ) ∈ {0, . . . , t}3|σ1

t + σ2
t + σ1

t ≤ t
}

To completely formalize the problem, let prescribe a form
of the statistic updating mapping postulated in (6). In the
context of the toy problem, it is time independent

S(y, a, σ1, σ2, σ3) ≡
(

σ1 + δ0,y δ0,a, σ2 + δ0,y δ1,a, σ3 + δ1,y δ0,a

)

In the experiments, the coin tossing was simulated with
an use of pseudo-random generator simulating a coin with
the pay-off probability of the ”Heads” side fixed at 60%
and the pay-off probability of the ”Tails” side sampled
from 0% to 100% by a 1% step. At first, the short-horizon
experiments were made to compare the results of the
different orders of the used HDMR approximation. The
index sets are

D1 ≡ {∅, {1}, {2}, {3}}

D2 ≡ {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}

On the short game horizon, i.e., τ = 10, each experiment
was repeated 5000 times for the various strategies: the
exact optimal strategy prepared according to (7) and for
both approximated optimal strategies derived according
equations (23) using index set D1, resp. D2. The results
of these experiments are depicted in Figure 1.
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Fig. 1. The average gain of the optimal strategy compared
with the gains obtained from approximated strategies
based on index sets D1, resp. D2.

Comparing the results of the approximated strategies
based on the index set D1 and D2, the first-order approx-
imation driven by D1 seems to be good enough in the
context of the toy problem. Therefore, it is used also in
the long horizon experiments. To illustrate the power of
the newly introduced technique, the game horizon of 200
steps is to be solved. It is no more possible to compare
these results of the approximated suboptimal solution with
the optimal one. As a basic illustration, results obtained
by the ”receding horizon” technique are attached. It ran
with the receding horizon of 5 steps. Both strategies ran
in 100 repetitions, for the results see Figure 2.

6. CONCLUSION

The aim of this work was to cope with infeasible memory
demands necessary to represent the optimal decision mak-
ing strategy. The upper bound of the Bellman function was
found capable of applying the HDMR approximation eas-
ily. To obtain the best possible approximation, the HDMR
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Fig. 2. The average gain of the first order approximation
based on index set D1 compared with the average gain
obtained from the ”receding horizon” approximation.

technique was tuned to work with a general shape of ap-
proximation domain. Combining both these approaches, a
series of linear systems appears, that implicitly determines
the approximated quantity.

As illustrated in the example of the tossing of an unknown
coin, the correspondence of the results produced by the
approximated strategy on the one hand with the optimal
results on the other hand was very good. The extended
experiments on more complex systems are needed to
confirm this observation.

The bottle-neck of this approximation technique is the
complicated construction of the central matrices (23). It
still needs to pass through the whole solution domain,
never-the-less it can be parallelized easily. Also, a promis-
ing variant seems to be the recycling of these matrices into
a new step of decision making, i.e., introducing a receding-
horizon-like concept with a much longer horizon enabled
by the use of the HDMR approximation. It is a topic of
the future.
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