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Abstract

A numerical method to solve the so-called regulator equation is presented here. This equation consists of partial differential equations combined
with algebraic ones and arises when solving the output-regulation problem. Solving the regulator equation is becoming difficult especially for the
nonminimum phase systems where reducing variables against algebraic part leads to a potentially unsolvable differential part. The proposed
numerical method is based on the successive approximation of the differential part of the regulator equation by the finite-element method while
trying to minimize a functional expressing the error of its algebraical part. The method is analyzed to obtain theoretical estimates of its convergence
and it is tested on an example of the “two-carts with an inverted pendulum” system. Simulations are included to illustrate the suggested approach.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Tracking a given reference while rejecting an unknown
disturbance belongs to the most prominent problems in control
theory and applications. If the reference to be followed and/or
disturbance to be rejected are generated by a finite-dimensional
autonomous exogenous system, the corresponding framework
is typically referred as the output-regulation problem (ORP),
first introduced in Isidori and Byrnes (1990) and Huang
and Rugh (1990) and nicely summarized in the recent
monograph (Huang, 2004) or the earlier tutorial paper (Byrnes
& Isidori, 2000). Common feature of various modifications
of ORP is that they require solving the so-called regulator
equation (RE) being the set of partial differential equations
combined with the algebraic ones. Geometrically, the solution
of RE gives an error-zeroing manifold together with an open
loop control making it invariant. Solvability of the RE was first
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characterized via center manifold theory (Hepburn & Wonham,
1981). Such an approach requires hyperbolic zero dynamics.
The more interesting nonhyperbolic case, when RE solvability
is not guaranteed, was first analyzed in Huang (1995). While
all these results characterized solvability of various types of
ORP in terms of RE solvability, only few of them propose
methods for solution of RE as well (Čelikovský & Rehák,
2004; Huang, 2000, 2001, 2003; Rehák & Čelikovský, 2004).
Solving the RE is becoming even more important for the
nonminimum phase systems where its solution directly enters
feedback compensator. Summarizing, the main challenge for
RE solving is the nonhyperbolic and nonminimum phase
case. The method for computing approximate solution of RE
analytically via undetermined coefficients of Taylor expansion
of solutions is developed in Huang (2000, 2001, 2003). Its
disadvantage is given by the fact that for each plant one
has to make quite nonstandard computations that are difficult
to be implemented as a computer algorithm. As a certain
counterpart, papers (J. Wang & J. Huang, 2001; D. Wang & J.
Huang, 2001) develop numerical methods to solve the regulator
equation based on its neural network approximation, including
its parameters’ optimization and error analysis.
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The goal of the present paper is to use more classical
tools and adapt existing numerical algorithms based on finite-
element method (FEM). The most PDE solvers are designed
to obtain solutions of pure PDE’s and cannot directly handle
the algebraic part of RE. At the same time, for nonminimum
phase systems it is not possible to reduce RE to pure PDE,
since such an approach would lead to an unsolvable partial
differential equation. The approach suggested in this paper
therefore replaces the algebraic equation by a certain penalty
functional which is then optimized on solutions of PDE part of
RE. In such a way, solution of rather nonstandard RE is replaced
by solving series of standard PDE’s for which PDE solvers
are designed. It will be shown that under reasonable technical
assumptions the minimum of that penalty functional exists and
the method converges to it. At the same time, this minimum will
be shown to determine directly the ultimate bound on error of
output regulation.

The paper is organized as follows. To explain the above
ideas precisely, the simplest full information ORP is introduced
in the next section for the single input single output system.
Section 3 describes proposed algorithm in detail, including the
analysis of regulation error depending on the penalty minimum,
while Section 4 gives the conditions for the existence of the
penalty minimum and method convergence to it. Section 5
illustrates our results on the application being the two-carts with
the inverted pendulum system. Comparison between the Taylor
expansion method and our new method is given in Section 6
together with further discussion of some numerical aspects.
Conclusions are drawn in the final section while some necessary
technical propositions and proofs are collected in the Appendix.

2. Output-regulation problem

Consider the following single input single output plant

ẋ = f (x) + g(x)u + p(x)w, y = h(x),

f (0) = 0, h(0) = 0, g(0) 6= 0,
(1)

where x ∈ Rn and y ∈ R denote the state of the plant and
its output to be controlled, respectively, while u ∈ R stands
for the controlled input and w ∈ Rq for the disturbance input.
The vector fields f : Rn

→ Rn , g : Rn
→ Rn, p :

Rn
→ Rq and the function h : Rn

→ R are supposed to
be sufficiently smooth. The standard application goal is the
output y of the plant tracking asymptotically a given reference
while rejecting the disturbance. Specific feature of the output-
regulation problem (ORP) is that both the reference and the
disturbance are generated by an autonomous system called in
the sequel as the exogeneous one. More specifically, consider
the following exogeneous system

ẇ = s(w), w ∈ Rq , s(0) = 0, (2)

then the reference signal to be tracked is given as q̄(w) where
q̄ : Rq

→ R is a smooth function such that q̄(0) = 0. Without
any loss of generality, the state w of the exosystem is assumed
to generate the disturbance on the right-hand side of the plant
(1) as well. Moreover, as in Huang (2004), the exosystem (2) is
assumed to be neutrally stable.
To give the formal definition of the ORP define the tracking
error as

e(t) = y(t) − q̄(w(t)). (3)

Definition 1. The State Feedback-Regulation Problem for (1)
and (2) is said to be locally solvable if there exists a function
α(x, w) ∈ Ck(Rn

× Rq , R), k ≥ 2, satisfying the following
conditions:

(1) α(0, 0) = 0,
(2) the system (usually called as the “disconnected system”)

ẋ = f (x)+ g(x)α(x, 0) is asymptotically stable in the first
approximation,

(3) there exists a neighborhood U ⊂ Rn
×Rq of the origin such

that for every (x(0), w(0)) ∈ U the solution of the Eqs. (1)
and (2) with u(t) = α(x(t), w(t)) satisfies limt→+∞ e(t) =

0, where e(t) is given by (3).

Theorem 2. Suppose (1) with w ≡ 0 has asymptotically
stabilizable linear approximation. Then the state feedback ORP
for (1) and (2) is locally solvable if and only if there exist
a neighborhood W of the origin in Rq and a pair of smooth
functions, denoted by x, c (x : W → Rn, c : W → R) such
that x(0) = 0, c(0) = 0,

h(x(w)) − q̄(w) = 0

∂x(w)

∂w
s(w) = f (x(w)) + g(x(w))c(w) + p(x(w))w

(4)

are satisfied. Moreover, if the solution of (4) exists, the
corresponding state feedback compensator can be taken as
u = α(x, w) = c(w) + K (x − x(w)) where u = K x stabilizes
the linear approximation of (1).

Proof of Theorem 2 and further facts on ORP may be found
in Isidori and Byrnes (1990), Byrnes and Isidori (2000) and
Huang (2004). In particular, the Eq. (4) are usually called as the
regulator equation (RE). As a matter of fact, the solution of
the RE may be interpreted as follows. Putting in (1) u = c(w)

and choosing for (1) and (2) any initial conditions x(0) =

x0, w(0) = w0 with x0 = x(w0) guarantees that x(t) =

x(w(t)) ∀t ≥ 0, and consequently h(x(t))−q̄(w(t)) = 0, ∀t ≥

0. Using the geometric terminology, the submanifold of Rn+q

given by x = x(w) is the so-called error-zeroing manifold
which is forward invariant when u = c(w). To study the RE,
the following terminology will be useful in the sequel.

Definition 3. Relative degree of the ORP is the usual relative
degree (Isidori, 1995) of the so-called extended system (1) and
(2) having the state

[
x>, w>

]>
∈ Rn+q , the input u and the

output h(x) − q̄(w). Analogously, zero dynamics of the ORP,
the minimum, resp. the nonminimum phase and the hyperbolic
ORP are also defined via the extended system (1) and (2).

3. Numerical solution of the regulator equation

The main contribution of this paper is to develop a numerical
method for solving the RE and analyze its convergence and
applicability for output-regulation design. From the PDE theory
point of view, the regulator Eq. (4) appears to be rather
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nonstandard due to several reasons:

(1) It contains a first-order PDE. These are much less
investigated than the second-order PDE’s.

(2) Auxiliary boundary conditions have to be chosen as one
cannot solve this PDE on the whole space Rq . Rather it
must be solved on a fixed bounded domain Ωb ⊂ Rq , 0 ∈

Ωb , w(0) ∈ Ωb.
(3) Most of existing software (like FEMLAB) cannot treat

algebraic part, which must be therefore handled in a special
way.

When the ORP for a SISO plant has a well-defined relative
degree r , it is possible to reduce the RE (being a PDE plus
one algebraic equation for n + 1 variables) into n − r pure
PDE’s for n − r variables. Nevertheless, such a reduced PDE is
guaranteed to be solvable only if the zero dynamics of the ORP
is hyperbolic, (Huang, 2004).

Example 1. To illustrate the solvability issue for nonhyper-
bolic nonminimum phase plant, consider the plant and the ex-
osystem (a ∈ R is a parameter discussed later on): ẋ1 =

x2 − u, ẋ2 = aw2
1 − u + x2, ẇ1 = w2, ẇ2 = −w1 with the

error e = x1 − w1. The corresponding ORP has nonhyperbolic
zero dynamics ẋ2 = aw2

1 . Its regulator equation has the form

x1(w1) − w1 = 0,
∂x1

∂w1
w2 −

∂x1

∂w2
w1 = x2 − c(w),

∂x2

∂w1
w2 −

∂x2

∂w2
w1 = aw2

1 − c(w) + x2(w), w = (w1, w2)
>

and therefore x1(w) = w1, x2(w) = c(w) + w2, while

∂x2

∂w1
w2 −

∂x2

∂w2
w1 = w2 + aw2

1.

Notice, that if a = 0 the latter equation has a solution x2(w) =

−w1, if a 6= 0 no solution exists.

Theorem 4. Suppose in (4) that f has Hurwitz Jacobian at 0.
Then PDE part of (4) has local solution x(w) for every given
continuous function c(w), c : Rq

→ R, such that c(0) = 0.
Moreover, x(0) = 0.

Proof. Follows by a standard application of center manifold
theorem, cf. e.g. Carr (1981), Huang (2004) and Isidori (1995).
Actually, for any given c(w) PDE part of (4) defines center
manifold for the extended system (1) and (2) with u ≡ c(w)

which locally exists as the Jacobian of f is Hurwitz. Moreover,
first equation of (4) turns into f (x(0)) = 0 for w = 0. The
Jacobian of f is Hurwitz, thus it is regular. Hence one obtains
x(0) = 0, consequently h(x(0)) − q̄(0) = 0. �

Theorem 5. Suppose there exists a bounded region Ωb 3 0 and
real numbers ε1 > ε0 ≥ 0 such that for every ε ∈ [ε0, ε1] there
exist sufficiently smooth mappings cε(w), xε(w), w ∈ Ωb such
that

J (cε(w)) =

∫
Ωb

(h(xε(w)) − q̄(w))2dw1 . . . dwµ = ε, (5)

where xε(w) is the corresponding solution of PDE part of (4)
with cε(w), cε(0) = 0. Then there exist positive constants
C, β, R such that for all ε ∈ [ε0, ε1] |e(t)| ≤ C exp(−βt)+ Rε

where the error e(t) is given by (1)–(3) with sufficiently small
initial conditions and u = α(x, w) = cε(w) + K (x − xε(w)).

Proof. Denote by x(w), c(w) the exact solution of the Eq. (4).
The true state of the controlled system is denoted by x(t).
Finally, y(t) = h(x(t)), yε(t) = h(xε(w(t))) and yp(t) =

h(x(w(t))). (Due to the last relation in (4) the equality yp(t) =

q̄(w(t)) holds.) We assume that the initial conditions of the
system were set as x(0) = x0 which may not lie on the zero-
output manifold. To estimate the error e(t) = y(t) − yp(t)
triangle inequality yields |y(t) − yp(t)| ≤ |y(t) − yε(t)| +

|yε(t) − yp(t)|. Since |yε(t) − yp(t)| = |yε(t) − q̄(w(t))|,
Proposition 12 (see Appendix) guarantees that (5) implies
existence of a constant R > 0 such that |h(xε(w(t))) −

q̄(w(t))| = |yε(t) − yp(t)| < Rε for each t > 0. This together
with Proposition 11 (see Appendix) completes the proof. �

Remark 6. Obviously, Theorem 5 gives for ε = 0 the
well-known Theorem 2 as its particular case. Notice, that
the origin of the “error” ε > 0 is indifferent: it can be
both a consequence of inevitable numerical inaccuracy of
computational algorithm for otherwise well solvable RE and
the best available inaccuracy of the algebraic part of some
unsolvable RE. It can be even combination of both mentioned
inaccuracy aspects.

Algorithm 1. Based on the previous theorems, the following
algorithm for the output regulation was designed. First, define f̂
by f̂ (x) = f (x)+g(x)K x , where static state feedback u = K x
stabilizes the linear approximation of (1) with w = 0. Then,
consider the equation

∂x(w)

∂w
s(w) = f̂ (x(w)) + g(x(w))ĉ(w) + p(x(w))w, (6)

0 = h(x(w)) − q̄(w). (7)

Obviously, (x(w), c(w)) is the solution of (4) if and only if
(x(w), ĉ(w)), ĉ(w) = c(w)− K x(w), is the solution of (6) and
(7). To solve (6) and (7), the following procedure is applied:

(1) Choose the first iteration of the function c̃0(w).
(2) Suppose the i th iteration is known, say c̃i (w). Using a

numerical PDE solver, solve the Eq. (6) with c̃(w) = c̃i (w)

to obtain xi (w). This is always possible by Theorem 4.
Compute penalty (5) for xi (w).

(3) If the penalty value is not satisfactory, compute the gradient
of the functional (5) and based on it the next iteration
c̃i+1(w), then go to step 2.

(4) If the penalty value is satisfactory and equal to some ε > 0,
stop the procedure to obtain xfinal, c̃final solving (6) and
generating penalty (5) equal to ε.

By Theorem 5, upon terminating of the above algorithm, the
following inequality holds:

|e(t)| ≤ C exp(−βt) + Rε.

Here, e(t) is given by (2) and (3) and (1) with u = K x +

c̃final(w).
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n,N
Remark 7. As a matter of fact, other approaches to design
output-regulation feedback do basically the following: (1)
assume RE is somehow (but how?!) solved; (2) then, using
gains K stabilize the corresponding error-zeroing manifold. On
the contrary, our algorithm at first asymptotically stabilizes
the approximate linearization and only afterwards tries to
solve RE for a much more convenient system. Due to
the well recognized peculiarity of solving RE, we find our
approach more reasonable. Notice that the solution to original
nonstabilized RE (4) is x(w), c(w) = K x(w) + c̃(w).

The data produced by the corresponding numerical method
finding an approximation of the RE is in a numerical form. Thus
some postprocessing of these data is necessary. The software
package FEMLAB (used to evaluate the solution of RE in
the example presented in Section 5) offers for this purpose
a possibility of application of some built-in procedures. The
results can be also converted into a look-up table suitable for
interpolation. This allows to avoid necessity of using these
predefined functions. Notice also that at each minimization
step, a certain PDE is solved approximately via the finite-
element method which is the source of further minor small
numerical errors. Nevertheless, the crucial regulation error is
imposed by the penalty minimum which is investigated in the
next section.

4. Convergence to a penalty minimum

The minimum of the functional J is sought on a finite-
dimensional space in practice. This is due to the fact that the
function x(w) is computed numerically using FEM. (For details
on implementation of the FEM see e.g. Ciarlet (1978).) It is
applied as follows: first, the domain Ωb is expressed as a union
of triangles such that intersection of two distinct triangles is
either empty, a common vertex or a common edge. This set of
triangles is called the mesh, the vertices (denoted by wk, k =

1, . . . , N ) are called the nodes.
The functions ϕi, j , i = 1, . . . N , j = 1, . . . , n can be

defined by ϕi, j (wk) = (0, . . . , 0, δ(i, k), 0, . . . , 0)T, δ(i, k)

being on the iN + j th position for all nodes of the mesh wk, k =

1, . . . , N . Then, the evaluated function can be expressed as
x(w) =

∑N
i=1

∑n
j=1 x̃i, jϕi, j (w). The unknown parameters

are the values x̃i, j for i = 1, . . . , N , j = 1, . . . , n. Define

x̃ =
(
x̃1,1 . . . x̃1,n . . . x̃N ,1 . . . x̃N ,n

)T. The control
u is also replaced by a vector ũ ∈ RM for a M > 0. The Eq. (4)
is evaluated in the nodes of the mesh and the derivatives of the
function x(w) are replaced by a linear term. Hence one obtains
a set of nN algebraic equations (the unknown variable being
x̃). For further purpose its right-hand side is split into the linear
terms (denoted by Ãx̃ , B̃ũ) and the higher-order terms denoted
by f̃ , g̃. The discretized equation then reads

M̃(s(w))x̃ = Ãx̃ + B̃ũ + f̃ (x̃) + g̃(x̃)ũ. (8)

Here one can notice that Ã = diag(A, . . . , A) (N times).
The term M̃(s(w))x̃ is the numerical approximation of the
derivative ∂x

∂w
s(w). An estimate for the left-hand side term is:

‖M̃(s(w))x̃‖ ≤ % diamΩ‖x̃‖. As f (0) = 0, g(0) 6= 0 the
same holds for the functions f̃ , g̃. Moreover the Jacobi matrix
of the function f evaluated at 0 is regular, this holds also for
the matrix Ã and due to the previous estimate it holds for
the term Ã − M̃(s(w)) as well. As M < Nn the set {ξ ∈

RnN , ξ is the discrete solution of RE with right-hand side ũ,

ũ ∈ RM
} is a smooth M-dimensional manifold in RNn .

This will be denoted by Λ. For the sake of simplicity
we assume in the following text that the function h
is linear. This is not restrictive as, upon the condition
that dh(0) 6= 0, the system can be transformed so
that the output mapping is linear. In this case the
Eq. (8) is written for the transformed system. Then the vector h̃
can be defined as h̃ = (h(ϕ1,1), . . . , h(ϕn,N )).

Assumption A. The manifold Λ does not contain the cone
{x ∈ RnN , 〈x, y〉 < α‖x‖‖y‖, y ∈ Ker h}

⊥ for a fixed α > 0.

Assumption R. The matrix Ã − M̃(s(w))x̃ is regular. The cost
functional has to be discretized as well. The discretization of
the mapping x(w) 7→

∫
Ω (h(x(w))− q̄(w))2dw will be denoted

by Ĩ while the symbol J̃ stands for the discretization of the
mapping ũ 7→ J̃ (x̃) where x̃, ũ satisfy (8).

Lemma 8. Let the Assumptions A and R hold. Moreover, let

supx̃∈Rn
‖ f̃ (x̃)‖

‖x̃‖
< +∞ and let there exists a constant k > 0

such that supx̃∈Rn ‖B̃ − g̃(x̃)‖ ≥ k. Then J̃ (u) → +∞ as
‖u‖ → +∞.

Corollary 9. Under Assumptions A and R there exists a
minimum of the functional Ĩ .

The corollary follows from the nonnegativity of the functional
Ĩ and the previous lemma. The proof of the lemma is given in
the Appendix.

To prove convergence to the above existing minimum,
certain convexity properties should be guaranteed. In the case
of linearity of the function h the mapping x 7→

∫
Ωb

(h(x(w)) −

q̄(w))2dw is strictly convex. It is assumed that strict convexity
is preserved even after the discretization of this functional.
Then there a nonnegative function γ : RnN

× RnN
→ R

so that for every λ ∈ (0, 1) holds λ Ĩ (x̃1) + (1 − λ) Ĩ (x̃2) ≥

Ĩ (λx̃1 + (1 − λ)x̃2) + λ(1 − λ) + γ (x̃1, x̃2). The function γ is
called the convexity modulus of the function Ĩ . Further, let us
investigate the convexity of the penalty optimization problem.
Define ẽλ as ẽλ = λx̃1+(1−λ)x̃2− x̃λ. The function ẽλ satisfies
the equation

M̃(s(w))ẽλ = Ãẽλ + λ f̃ (x̃1) + (1 − λ) f̃ (x̃2) − f̃ (x̃λ) +

λg̃(x̃1)ũ1 + (1 − λ)g̃(x̃2)ũ2 − g̃(x̃λ)ũλ.

One has Ĩ (λx̃1 + (1 − λ)x̃2) = Ĩ (x̃λ) + ∇ Ĩ (x̂)ẽλ

with a point x̂ lying in the segment S := [λx̃1 +

(1 − λ)x̃2, x̃λ]. On the other hand the definition of
the functional Ĩ implies that its gradient is equal to
2(

∫
Ωb

(h̃(x̂) − q̄(w))ϕ1,1(w)dw h1,1 . . . , 2
∫
Ωb

(h̃(x̂) − q̄(w))

ϕn,N (w)dw hn,N ). Hence, using the Holder inequality twice,
one gets

|∇ Ĩ (x̂)ẽλ| ≤ 2| Ĩ (x̂)| |h̃(ẽλ)|
∑

‖ϕi, j‖ =: D.
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Moreover, | Ĩ (x̂)| ≤ supx̂∈S =: Ĉ as the segment S is
a compact set. Now, it is sufficient to find ũ1, ũ2 so that
D ≤ λ(1 − λ)γ (x̃1, x̃2). The matrix Ã − M̃(s(w)) is regular
thanks to the Assumption R. Hence

h̃(ẽλ) = h̃
(
( Ã − M̃ Sw)−1(λ f̃ (x̃1) + (1 − λ) f̃ (x̃2)

− f̃ (x̃λ) + λg̃(x̃1)ũ1 + (1 − λ)g̃(x̃2)ũ2 − g̃(x̃λ)ũλ)
)

.

As x̃ is a function of ũ one can define G(ũ) = f̃ (x̃) + g̃(x̃)ũ
where x̃ solves (8) with right-hand side ũ. According to the
assumption, the mapping ũ 7→ x̃ is a C2-mapping. Hence, using
differentiability of the function G one gets h̃(ẽλ) = λ(1 −

λ)h̃
(
( Ã − M̃ Sw)−1 1

2 D2G(û)(ũ1 − ũ2, ũ1 − ũ2)
)

where û

lies in the segment [ũ1, ũ2]. This implies existence of a matrix
P such that h̃(ẽλ) ≤ λ(1 − λ)|h̃(P(ũ1 − ũ2))|. On the other
hand, using the definition of the functional Ĩ , one can easily see
that γ (x̃1, x̃2) = ‖h̃(x̃1) − h̃(x̃2)‖

2. This can be summarized
using the following lemma.

Lemma 10. Let 2Ĉ
∑

n,N ‖ϕi, j‖ |h̃(P(ũ1 − ũ2))| ≤ ‖h̃(x̃1) −

h̃(x̃2)‖
2. Then the functional J̃ is convex in the neighborhood

of the optimum.

The lemmas presented above make up a basis for the successful
application of a gradient-based method for the minimization
of the cost functional. Convexity is often a sufficient condition
for convergence of such methods. Hence, the convexity region
around the minimum is actually a set of initial guesses for the
control ũ that give rise to a convergent iterative minimization
process.

5. Applications

We illustrate our approach on a two-cart system with an
inverted pendulum, considered first by Devasia (1996) and later
used by Huang (2003). The system consists of two elastically
connected carts. An inverted pendulum is placed on the first cart
while the input is the force F acting on this cart. This system
has six states x = (x1, x2, x3, x4, x5, x6)

T, correspondingly:
position and velocity of the first cart, position and angular
velocity of the pendulum, position and velocity of the second,
passive cart. The output of the system is y = x1, a single input
is denoted as u, thereby giving the standard nonlinear plant of
the form (1) with

f =



x2
mlx2

4 sin x3 − bx2 − mg cos x3 sin x3 + K (x5 − x1)

M + m(sin x3)2

x4
(M + m)g sin x3 + cos x3[bx2 − mlx2

4 sin x3] − K (x5 − x1)

l(M + m(sin x3)2)
x6

K

M
(x1 − x5)


g =

(
0,

1

M + m(sin x3)2 , 0,
− cos x3

l(M + m(sin x3)2)
, 0, 0

)T

h = x1, p(x) ≡ 0.
We adopted the same physical constants from Huang (2003):
the mass of the cart M = 1.378, the coefficient of friction
b = 12.98, the length of the pendulum l = 0.352, mass of
the pendulum m = 0.051, spring constant K = 10 and the
gravitational constant g = 9.81. For the same reason, we also
aim to track the reference w(t) generated by the following ex-
osystem ẇ1 = w2, ẇ2 = −w1, reference = w1. To follow our
Algorithm 1, the linear approximation of the system in ques-
tion around the equilibrium point (0, 0, 0, 0, 0, 0)> was com-
puted and asymptotically stabilized by feedback gains K =

(−97.2, −72.0065, −172.027, −31.252, 13.0584, −50.58),
thereby obtaining the following asymptotically stable in lin-
ear approximation system d

dt x(t) = f (x(t)) − g(x(t))K x(t) +

g(x(t))ũ. Here, ũ = u − K x stands for the new control input. It
remains to determine its feedforward part to ensures the track-
ing the desired reference. To do so, let us obtain the RE for the
last system, i.e. ∀ (w1, w2) ∈ R2(

w2
∂x1(w)

∂w1
− w1

∂x1(w)

∂w2
, . . . , w2

∂x6(w)

∂w1
− w1

∂x6(w)

∂w2

)T

= f (x(w)) − g(x(w))(K x(w) − ũ), w1 = x1(w), (9)

where x(w) = (x1(w), . . . , x6(w))T, x1(0) = 0, . . . , x6(0) =

0. To solve this RE, we used the fact that the signal to be
tracked, being sine, has absolute value less or equal to one
and therefore it was sufficient to find x(w) for ‖w‖ ≤ 1, only.
Therefore the domain Ωb = {w ∈ R2

| ‖w‖ < 2} was chosen
and the algebraic condition assumed to hold on ∂Ωb giving
x1(w) = w1 for all w ∈ ∂Ωb. The boundary conditions for
the other components of the solution are chosen as xi (w) = 0
on ∂Ωb and Algorithm 1 applied to RE (9). The corresponding
penalty functional was chosen as

J =

∫
{w∈R2; w2

1+w2
2≤1}

(w1 − x1(w))2dw1dw2. (10)

When evaluating all its steps, the values of the feedforward
function iterations ci (w) were set at points of a rectangular
grid with edge 0.5. Its values at other points are calculated
via first-order interpolation. Thus there is a finite amount of
design parameters only. This allows to use a modified direct
search method (see Bertsekas (1995)) to adjust the values of
the feedforward iteration ci (w) at the points of the grid. The
values of the functional (10) depending on iteration number
are shown in Fig. 1. The output x1 of the compensated plant
and the desired reference are shown at Fig. 2. The solid
line represents the plant output while the dashed one the
reference. The optimization of the penalty functional is a rather
complex though straightforward technical issue and its detailed
description is therefore omitted here.

6. Comparative study and further discussion on numerical
aspects of the proposed method

The first purpose of this section is to provide a comparative
study of the new method proposed by this paper and the
well-known method based on computation of undetermined
coefficients of the Taylor expansion. To do so, recall the basics
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Fig. 1. The value of the error functional.

Fig. 2. Regulation results.

f that method, further referred as the “classical” one. For its
ull description, see Huang (2000). According to this classical
ethod the approximation z(w) and c̄(w) of the RE solution

re to be determined using Taylor series of K th order:

(w) =

K∑
k=1

Zkw
[k], c̄(w) =

K∑
k=1

Ckw
[k],

[1]
= [w1, . . . , wq ],

[2]
= [w2

1, w1w2, . . . , w1wq , w2
2, . . . , w2wq , . . . , w2

q ],

tc. Substituting these expansions into RE and identifying
oefficients of w[k] yields the corresponding approximation of
he center manifold.

As far as the FEM-based method presented here is
oncerned, the crucial idea is to replace algebraic part by
penalty to solve each time less peculiar PDE then in the

ase of classical method, cf. Remark 7. The common feature
f both the classical method and the method developed by
he present paper is the need for lengthy calculations off-
ine. Nevertheless, while the FEM-based method uses computer
umerical algorithm easily applicable by any nonspecialized
user, the classical method requires sophisticated manual and
laborious computations by a skilled mathematician. Up to our
best knowledge, no symbolic code for these computations has
been developed yet. Moreover, while numerical computations
are addressed via standard convergence and numerical analysis,
those manual or symbolic computations usually suffer in
that respect serious drawbacks. In particular, our FEM-based
algorithm provides center manifold data on possible large
domain, while the classical method only on a potentially very
small neighborhood with no guarantee of its size. Notice
also that while the classical method is just a comparison
of coefficients in the Taylor series at the origin providing
no estimate of the error caused by this approximation, the
error estimate of the FEM-based method valid on the whole
domain Ωb is given by the Theorem 5. Last, but not least, the
classical method is applicable only if all involved functions
can be expanded into the Taylor series. This assumption is
not required by our method. For instance, some functions can
be defined as interpolations of values given by a table. The
implementation of the control law (which is based on the
computed center manifold) is fairly straightforward in both
cases. To demonstrate the practical viability of the FEM-based
approach, remind its real-time implementation to a laboratory
gyroscopical platform, (Rehák, Čelikovský, Orozco-Mores, &
Ruiz-León, 2007).

The second purpose of this section is to further discuss
practical computer and numerical aspects of our algorithm. The
extensive list of literature concerning problems arising from
numerical solution of the partial differential equations, might be
represented e.g. by Ciarlet (1978) and references within there.
At the very end, the finite-element method converts the problem
of numerical solution of partial differential equations into the
problem of finding a solution of a large set of linear algebraic
equations. These systems are usually badly conditioned. A
thorough analysis of such errors which can be found in Higham
(1996). During extensive numerical testing of our method, these
software tools appeared as the reliable ones.

The detailed sensitivity analysis of the numerical optimiza-
tion of the penalty induced by the algebraic part of RE is out of
scope of the present paper. Nevertheless, one can proceed as fol-
lows. First, under the assumptions of the Lemma 10 and Corol-
lary 9 the optimization problem, being the least square problem,
is convex and existence of its solution is guaranteed. Secondly,
as the system and the exosystem are described by smooth func-
tions, differentiating the RE with respect to a parameter one can
obtain an equation whose solution is the derivative of the func-
tion x with respect to this parameter. Now, to conclude the sen-
sitivity analysis, one can derive the expression for the derivative
of the functional (5). Moreover, if this parameter is the design
variable defining the feedforward c, one can use smoothness of
this problem to employ gradient-based optimization methods.

7. Conclusions

A new approach to the solution of the nonlinear output-
regulation problem based on the solution of the regulator
equation using the finite-element method was presented. Use



1364 B. Rehák, S. Čelikovský / Automatica 44 (2008) 1358–1365
of this method is enabled by two key steps proposed in this
paper: pre-stabilization of the plant and consequently replacing
the algebraic part of RE by a penalty functional. A convergence
analysis was carried out for the proposed method which was
also compared with other existing approaches in detail and
demonstrated by the applied case study.
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Appendix

Proposition 11. There exist positive constants C, β so that
(notation of Theorem 5 and its proof is being used)

‖y(t) − yε(t)‖ ≤ Ce−βt
‖y(0) − yε(0)‖. (11)

Proof. Denote by x(t) the true state of the controlled system
and by xε(w(t)) the value of the solution of the regulator Eq. (4)
at the point w(t). Then according to the Theorem 2.28 in Huang
(2004) the relation ‖x(t) − xε(w(t))‖ ≤ C̄e−βt

‖x(0) −

x(w(0))‖ holds for some positive constants C̄, β. Then (11)
follows from the smoothness of the function h. �

Proposition 12. Let us use the notation of Theorem 5 and its
proof. Then, (5) implies existence of a constant R > 0 such that
maxw∈Ωb |h(xε(w)) − q̄(w)| < Rε.

Proof. First, note that the error at the origin equals zero
according to Theorem 4.

It is assumed that the solution of the regulator equations is
a C1 function on the closure of the set Ωb. Thus the absolute
value of the derivatives ‖

∂xε

∂w
(w)‖ is bounded by a constant k

uniformly for all w. Let w̄ ∈ Ωb be arbitrary fixed. Denote
M = (h(xε(w̄)) − q̄(w̄))2. Let the set Uw̄ be defined as
Uw̄ = {w ∈ Ωb|‖w − w̄‖ < M

2k }. Due to the boundedness
of the derivatives of the function x one gets: w ∈ Uw̄ implies
(h(xε(w̄)) − q̄(w̄))2 > M

2 . On the other hand

ε >

∫
Ωb

(h(xε(w̄)) − q̄(w̄))2dw1 . . . dwµ ≥
M

2
κ

(
M

2k

)
, (12)

where the expression κ(r) represents the volume of a µ-
dimensional ball of radius r . The function ξ(M) =

M
2 κ( M

2k )

is continuous and increasing with M . Thus there exists an
inverse function ω = ξ−1. Obviously, (12) implies M < ω(ε).

Moreover, ξ = O(Mµ+1) and Mµ+1
= O(ξ) close to 0. Hence

ω = O(M
1

µ+1 ). Since µ+1 > 1 there exists R > 0 and 0 < εR
such that ω(ε) < Rε for all ε < εR . �

Proof of Lemma 8. According to the Assumption R, the Eq.
(8) has a solution x̃ for each ũ. Hence ‖ Ã − M Sw‖‖x̃‖ +

‖ f̃ (x̃)‖ ≥ ‖(B̃ − g̃(x̃))ũ‖ ≥ k‖ũ‖. Thus if ‖ũ‖ → +∞ then
also ‖x̃‖ → +∞.

It is to prove that ‖x̃k‖ → +∞ implies |h(x̃k)| → +∞.
The vector x̃k can be decomposed so that x̃k = x̃1

k + x̃2
k where
x̃1
k ∈ Ker h, x̃2

k ∈ (Ker h)⊥. As ‖x̃k‖ → +∞ then either
‖x̃1

k ‖ → +∞ or ‖x̃2
k ‖ → +∞. In the latter case one can

easily see that J̃ (ũk) → +∞. The Assumption A however
implies that, in the first case, ‖x̃2

k ‖ > α‖x̃1
k ‖ which implies that

‖x̃2
k ‖ → +∞ also. As the sets Lc = {x̃ ∈ (Ker h)⊥|h(x̃) ≤ c}

are bounded for every c > 0 one gets h(x̃)k → +∞ and thus
also J (ũk) → +∞.
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