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Model for Photosynthesis and Photoinhibition:
Parameter Identification Based on the Harmonic

Irradiation O2 Response Measurement
Branislav Rehák, Sergej Čelikovský, Senior Member, IEEE, and Štěpán Papáček

Abstract—A method for parameter identification of a model de-
scribing the growth of the algae is presented. The method is based
on the description in the form of the so-called photosynthetic fac-
tory. The experimental data are gained by measuring the steady-
state photosynthetic production when the input of the photosyn-
thetic factory (light intensity) is a harmonic signal. Estimation of
parameters is based on a sufficient number of experiments com-
pared with simulated data via the least-squares technique. As the
input signal is harmonic and the dynamics of the unforced system
is exponentially stable, the resulting asymptotical steady-state tra-
jectory of the photosynthetic factory is also periodic and can be
computed via determining an appropriate center manifold graph
by solving the corresponding first-order partial differential equa-
tion. The latter is performed by the finite-element method. The ap-
plication of the proposed method is demonstrated on an example
using real experimental data.

Index Terms—Biological system modeling, identification, least-
squares method, nonlinear systems.

I. INTRODUCTION

ADYNAMIC model of the photosynthetic production in mi-
croalgal culture is of fundamental importance for photo-

bioreactor design and process optimization. In the area of algal
biotechnology, the photosynthetic microorganisms growth mod-
eling has long been regarded as a well-defined discipline con-
sisting of the adequate coupling between photosynthesis and ir-
radiance resulting in the light response curve which represents
the microbial kinetics; see, e.g., the so-called Haldane type ki-
netics in Fig. 1 [5], [15].

However, several dynamic phenomena, e.g., flashing light en-
hancement, cannot be explained by a simple kinetic relation.
Thereafter, the interconnection between the steady-state kinetic
model and the dynamic one is often artificial [16]. The main
difficulty in considering the dynamic behavior of the photo-
synthetic processes (i.e., light and dark reactions, photoinhi-
bition, and photoacclimation) consists of different time scales.

Manuscript received January 22, 2007; revised August 17, 2007. This work
was supported by the Mininistry of Education, Youth and Sports of the Czech
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Fig. 1. Steady-state production curve of Haldane type or Substrate inhibition
kinetics. The governing relation is (using the most usual notation in biotech-
nological literature): � = mu S=(K + S + S =K ), where � is specific
growth rate (defined as � := _c =c , where c is the cell density) and S is
a limiting substrate, and � , K , and K are model constants. Maximum oc-
curs at S =

p
K K , when � = (� =2 K =K + 1). Note that, for

K ! 1, the production curve changes to Monod kinetics.

While the characteristic time of microalgal growth (e.g., dou-
bling time) is of the order of hours, the photosynthetic light and
dark reactions occur in milliseconds. Moreover, another relevant
process defining the light regime in the microalgal culture, i.e.,
the mean period of light/dark cycles induced by algal suspen-
sion flow in a photobioreactor, is generally in seconds.

As we possess some experiment-based knowledge of relevant
processes, we can formulate the basic model behavior and fur-
ther determine the model structure and the number of model
parameters. In our case, when looking for a model of photo-
synthesis and photoinhibition in microalgae, we can measure
the steady-state behavior (i.e., so-called – curve, see Fig. 1),
and the behavior under intermittent light regime, the so-called
flashing light experiments [10], [11], [16]. The qualitative re-
sults are as follows:

1) steady-state kinetics is of Haldane type;
2) microalgal culture in suspension has the so-called light

integration property, i.e., as the light/dark cycle fre-
quency is going to infinity, the value of the resulting
production rate (e.g., oxygen evolution rate) in the
microalgal culture goes to a certain limit value, which
depends on average irradiance in the culture only.

Hence, a simple dynamic model describing the cell growth
[given by the equations (3)–(4)] is introduced below. This model
takes the form of the so-called bilinear system being linear in the
state for fixed input and linear in input when the state is fixed, but
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nonlinear in total. In our case, the state has three components
representing three states of a photosynthetic unit, while a single
scalar input represents the irradiance in the culture.

The bilinear system, having the inherent property of Lip-
schitz dependence of trajectory on input with respect to cer-
tain weak type norm of input space [2]–[4], satisfy both of the
above-mentioned requirements 1) and 2); see [13] for inter-
preting and proving the above light integration property using
functional analysis tools. Moreover, the widely cited bilinear
model of photosynthetic factory (PSF), proposed by Eilers and
Peeters in 1988 [6], has proved to be an effective mean to model
microalgal growth in a lumped-parameter system under both
constant [6] and dynamic light regime [7]. The early fruit of
all of these modeling efforts is the excellent qualitative compli-
ance of the simulation results with the so-called flashing-light
experiments (the experimental measurements of photosynthesis
in intermittent light); see [11], [13], and [16]. The important
consequence of this fact is that the studied dynamic model of
photosynthesis based on the PSF model is sensitive to a char-
acteristic time scale of microalgal cell transport from the light
to dark zone and vice versa, enabling further extension of the
PSF model into a distributed-parameter system (e.g., aiming to
optimize photobioreactor design parameters and operating con-
ditions).

Nevertheless, there are only a few quite limited results on the
identification of the model parameters [17]. Moreover, the 95%
confidence interval for PSF model parameters published in [17]
shows some problems which are faced when identifying PSF
model parameters.

Therefore, the main goal of this paper is to develop a new
methodology of identification of PSF model parameters. It is
based on computing a nonstationary asymptotical steady-state
response to various harmonic input signals and comparing them
with appropriate experimental data from the 400-ml laboratory
photobioreactor (see Fig. 2). Computation of the asymptotic re-
sponse is possible by adding a harmonic generator to our model
and finding a center manifold of the resulting extended model by
solving the corresponding partial differential equation (PDE),
which is done by the finite-element method (FEM). This uses the
fact that the unforced model is an asymptotically stable linear
system and further develops ideas presented in [9].

This paper is organized as follows. Section II describes the
dynamical model of photosynthesis and redefines its parame-
ters, showing how a part of them can be determined from the
Haldane-type curve. Section III—the main contribution of this
paper—presents a new methodology for identification of the re-
maining parameters. It is based on the measurement of the har-
monic excitation response. Section IV collects particular identi-
fication results for specific experimental data. Section V draws
conclusions and gives some outlooks for future research.

II. DYNAMIC MODEL OF PHOTOSYNTHESIS AND ITS

REPARAMETERIZATION

The authors of the paper [6] originally worked with probabil-
ities that a hypothetical PSF is in one of the three states , , or

: represented the probability that the PSF is in the resting
state , the probability that the PSF is in the activated state

Fig. 2. Photobioreactor FMT 150, made by Photon Systems Instruments,
Czech Republic. FMT 150 is a unique combination of the cultivator and
monitoring device enabling a dynamic regulation of operating conditions (i.e.,
light, temperature, and gas composition) according to a user-defined protocol.
The growth of the cultures is monitored continuously by measuring the optical
density, and the instantaneous physiological state of the culture is measured by
the chlorophyll fluorescence quantum yield.

, and the probability that the PSF is in the inhibited state
. The PSF can only be in one of these states, so

(1)

Later on, Eilers and Peeters [7] abandoned the “probabilistic”
definition of PSF states and interpreted the state variables of a
PSF model as the molar fractions of phytoplankton cells in the
rested state , the activated state , and the inhibited state

; the same notation is also used in [17], [18], i.e.,

(2)

The possible transitions among the states indicated schemati-
cally in Fig. 3 are supposed to be linear with respect to the irra-
diance giving the following state space model of the PSF:

(3)

(4)

Further, taking into account (1), only two state variables, say
and , need to be evaluated giving the following dynamics of
the activated and inhibited states:

(5)

(6)

Here, , , , and are again the rate constants of the PSF model
and is the known scalar input function. It is assumed that

is at least piecewise continuous.
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Fig. 3. Scheme of the states and the transition rates of the PSF—Eilers and
Peeters PSF model. Three states of the photosynthetic factory are:R, the resting
state, A, the activated state, and B, the inhibited state. The transition rates are:
�u, �u,  , and � (unit: s ). The input variable u is the irradiance (unit: �E �

m s ).

For a given constant input, i.e., the constant irradiance , the
relation (3) and (4) and consequently the relation (5) and (6)
are systems of linear differential equations with constant coeffi-
cients and can be solved explicitly by classical means. Many au-
thors, e.g., Eilers and Peeters in [6], Zonneveld in [19], and Hang
in [8], restrict themselves to the steady-state solution, when a
constant irradiance is maintained long enough so that the PSF
states no longer change. More specifically, according to [6], the
specific growth rate of the photosynthetic production at the
steady state is proportional to the number of transitions
from the resting to the activated state, i.e.,

(7)

where is a new dimensionless constant that is one more pa-
rameter to be identified later on. In other words, (7) gives the
relation between the irradiance and the production (growth)
rate at the steady state. The value of the constant irradiance to
maximize growth rate is

(8)

Further, the relation between traditional model constants of Hal-
dane-type kinetics introduced by Fig. 1 and the parameters of
PSF model is

(9)

Notice that the role of the substrate of the traditional Haldane-
type model at Fig. 1 is equivalent to the role of the irradiance
in the PSF model (5) and (6).

Three model constants , , can be determined from
Haldane curve, see, e.g., [6], therefore the parameters , ,
and are easily obtained from (9). In other words, to deter-
mine all five ( , , , , and ) of the PSF model, more con-
ditions are needed to determine the remaining two parameters.

As the steady-state behavior is completely characterized by the
parameters , , and , additional conditions taking advantage
of some time-dependent measurements should be developed.

Before doing so, let us first conveniently reparameterize pa-
rameters involved in the problem. For this purpose, let us intro-
duce new parameters derived from the steady-state production
curve as follows:

(10)

(11)

Note that only and are dimensionless, and are in s ,
and the units for are those of irradiance, i.e., E m s .
Taking into account and in-
troducing a new dimensionless input defined as follows:

(12)

[see (8)] the system (5) and (6) takes the reparameterized form

(13)

(14)

(15)

Again, all three parameters and are equivalent to
steady-state behavior of the PSF. The remaining two parame-
ters and basically correspond to the time constants of two
interconnected processes (i.e., photosynthetic light and dark
reactions and photoinhibition). As a consequence, they might
be determined from dynamic measurements only. In the sequel,
those measurements are of two kinds: 1) step input response
and b) quasi-steady-state response to a harmonic forcing. It
will be shown later on that, due to the presence of the fast
and the slow dynamics, the step response is able to determine
slow-dynamics time constant only. To determine the remaining
parameter, the harmonic input response is used. This is the
main contribution of this paper.

Summarizing, the above reparametrization will be used for
the identification as follows:

• the use of the fixed-point steady-state measurements which
lead to the determination of parameters and ;

• the dynamic measurements to determine the remaining pa-
rameters and .
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III. DYNAMIC BEHAVIOR-BASED IDENTIFICATION

As already shown, the steady-state measurements only suffice
to determine the parameters and while the time re-
sponse of the plant to a suitable input signal is to be analyzed to
determine the parameters and . The corresponding method
is the main contribution of this paper and is described in this
paper below.

All considerations here are based on the reparameterized de-
scription of the PSF system by (13)–(15).

According to [7], [17], [18], the relation (7) can be extended
to the case when the state reaches its quasi-steady state (e.g.,
for the periodic input with the period [13]). Then, the mea-
sured production rate of photosynthetic oxygen satisfies the fol-
lowing equation:

(16)

In other words, (16) gives the relation between the time inte-
gral of a hypothetical state of the PSF model and the measur-
able quantity . In such a way, this integral may be computed
based on experimental measurements and then compared with
the model-predicted value, thereby giving the basic framework
for future identification methodology.

Therefore, the basic idea of our identification method is to
analyze the time-dependent responses of the PSF system under
suitable inputs, predict the corresponding value of , and, by
comparing with its measured value, identify the remaining pa-
rameters.

One can think about different kinds of input signal (the light
intensity applied to the algae). The most promising idea appear
to be those adopted from control engineering: to subject the pho-
tosynthetic system to excitation of a variety of harmonic signals
of different frequencies, amplitudes, and phases. Before con-
sidering harmonic forcing, let us briefly show some disadvan-
tages of more straightforward approach based on studying the
time transition curve to the steady fixed point corresponding
to some constant input.

A. Constant Input Signal

Using more adequate control engineering terminology, the
response to step input is being used here. The constant input
response is easier to implement and predict; nevertheless, it does
not enable to fully identify all parameters. The reason is that
one should use the time curve of the transition process, which
is decaying to the appropriate equilibrium point. As the system
dynamics has both very fast and slow components, the only hope
is to disregard a short time period when the fast component of
system dynamics is vanishing to recover its slow component. As
a consequence, despite the variety of constant inputs used, only
the product can be determined.

To be more specific, let us realize that the system (13) is a stiff
system. This has the following consequence: there is a relation

which is established very rapidly, no matter what
the initial conditions are. (To be precise, the state converges to
the set described by the relation very quickly.) This convergence
is practically unmeasurable. Further convergence to the steady

state is then much slower, and one may think of measuring it and
comparing with the predicted one. Moreover, the state converges
to the steady state without breaking the relation stated above.
The set described by this relation is called the slow manifold. It
will play an important role in future considerations.

Assume that a constant light intensity was applied to the
system (13). As this system is stable, the states approach a con-
stant vector in the limit. Denote by the fol-
lowing differences:

Substituting this equality into the system (13), one can see that
the variables obey the following equation:

(17)
Let us multiply the first equation of the system (13) by the con-
stant . Its typical value is known to be approximately 1/1000
[7], [17]. Therefore, one gets the following singularly perturbed
system:

(18)
The left-hand term of the first equation can be replaced by zero.
One gets the following algebraic equation

(19)

This relation between the variables is established very rapidly.
It actually describes the slow manifold indicated above.

The second equation in (18) and the relation (19) yield to-
gether the differential equation describing the evolution of the
state in the manifold

(20)

The last quantity in parenthesis should be equal to the coeffi-
cient of exponential decay of . This coefficient can be ex-
perimentally determined from the integral of measurements;
nevertheless, one can now easily see the most important draw-
back, due to the term in (20), that only this product of
parameters and could be determined from the constant
inputs-based identification. Therefore, some additional kind of
input is needed, namely the harmonic persistent input intro-
duced in the following subsection.

B. Harmonic Input Signal

As already indicated, this approach takes advantage of the
fact that forcing an asymptotically stable system by a harmonic
signal generates nonstationary periodic steady-state nonlinear
oscillation of its state. Clear advantage here is their steady-state

Authorized licensed use limited to: UTIA. Downloaded on August 26, 2009 at 03:18 from IEEE Xplore.  Restrictions apply. 



REHÁK et al.: MODEL FOR PHOTOSYNTHESIS AND PHOTOINHIBITION: PARAMETER IDENTIFICATION BASED ON RESPONSE MEASUREMENT 105

character: after some initial transition, these oscillations are a
simple static nonlinear image of the forcing ones, they do not
depend on an initial state, and they can go on forever. In such
a way, together with input constantly varying throughout wide
range of values, they provide a rich set of predicted data to be
compared with measured ones. Moreover, the above static non-
linear function is the solution of a certain PDE that depends on
frequency only, but is the same for all amplitudes and phases of
the appropriate harmonic inputs.

More specifically, both components of the system dynamics
can be excited throughout the time interval if the fre-
quency of the harmonic signal is properly chosen. Moreover, the
response of the plant tends to a “periodic steady state.” In this
state, the influence of the initial conditions is negligible, and
the response is only dependent on the harmonic input signal.
The response lies on a certain center manifold. Thus, the well-
known center-manifold theory can be applied to determine the
response.

To do so, one assumes that the input signal is generated by
an external autonomous dynamic system. This system is usu-
ally called in control theory as the exosystem [9], and it will be
defined later on.

The input of the system—the intensity of the light—is a har-
monic signal with amplitude and angular
frequency . Moreover, a constant value is added so that inten-
sity varies between zero and as

(21)

This signal is generated as follows. First, define the matrix by

(22)

and the vector by . The function
is then generated by the so-called exosystem

(23)

The output of the exosystem is equal to the input of the con-
trolled system. This signal describes also the light intensity that
is applied to the photobioreactor. For future purposes, let us de-
fine also

This together with the definition of the variable implies that
.

Some further assumptions must be done before the algorithm
is introduced. First, one assumes that all trajectories of the ex-
osystem lie in a bounded connected open set .
This poses a restriction on the amplitudes of the light intensity.
This input of the controlled system generates the state of
this system. The influence of the initial conditions decays with
time due to stability of the system. Thus, the state of the system
tends to a periodic function. According to the center-manifold
theorem [1], there exists a function so that

for . If the harmonic input signal

is generated by the system (23), the following holds in the limit
case:

...

On the other hand, if the system is described by (13), one has
the following:

(24)

As the previous equalities hold for every , one arrives at the
equation of the above-mentioned center manifold

(25)

for every .
Use of this equation is advantageous since the value of the

output in the limit case is available immediately after the solu-
tion of (25) for a set of initial conditions (i.e., for a set of mag-
nitudes of the amplitude of the light intensity). Moreover, the
periodic operation is used to gain the experimental data.

The function depends on the coefficients of the ma-
trices , i.e., it depends on the parameters . Con-
cerning the fact that the parameters can be determined
from the steady-state measurements (the measurements where
the light intensity is the constant one), the only interesting de-
pendence is the relation between the parameters and the
solution.

The values of these parameters will be determined using
a least-squares technique. The average values of the variable

are measured on the real system. The system is excited by
the signal as described in (21). The angular frequency
is kept fixed during a single measurement. On the other hand,
one makes a series of measurements with various angular
frequencies.

Values of the parameters are gained from the measured data
as follows. Having an initial guess of the parameters, one can
compute the solution of (25) and then evaluate the average value
of the variable . Let us now turn our attention to the real
system. As supposed before, the corresponding value ap-
proaches the periodic steady state. If the initial guess of the
unknown parameters was equal to the true values of the real
system, then all of the measured quantities would be equal. If
this is not the case, the initial guess must be adjusted to decrease
the discrepancy between the measurements and values predicted
by the model. To do this, a “measure of discrepancy” has to be
defined.

The measured quantity is mathematically defined as

Let be a closed trajectory of the exosystem in the state space.
Equation (13) was derived so that the norm of the state of the
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exosystem is normalized, i.e., . A straightforward cal-
culation (recall ) leads then to the formula

(The symbol denotes the curve integral along the
curve .) Assume that there are measurements of the quan-
tity . These are denoted by the symbols , the
corresponding values of angular frequency and amplitude are

, respectively, . Let the symbol
define the solution of (25) with the amplitude of the state of the
exosystem equal to , its angular frequency and parameters
being . Then, one can define the functional by

(26)

During the iteration process, one changes the values of the pa-
rameters so that the value of the above functional decreases.

The optimization of the functional equation (26) is a rather
delicate topic itself. The reason for this is that this functional
is in general nonconvex. However, from the point of view of
this study, this topic is also a technical matter. Indeed, the main
contribution of this paper is the method of how to compute effi-
ciently, using the center-manifold PDE and a particular param-
eter estimate, the corresponding algae production prediction and
the discrepancy. The optimization of the discrepancy is then op-
timization of some function of a finite number of parameters
which is, in a sense, a quite standard procedure. Thus, a more
detailed description of the optimization algorithm is omitted.

IV. EXPERIMENTAL RESULTS

The method was applied to the real data obtained from the
measurement of the integral average of the quantity . The data
used for the parameter identification were measured on the algae
Chlorella vulgaris. This algae were grown in glass vessels and
then exposed to the modulated light in the photobioreactor FMT
150 (see Fig. 2).

The periodic signal—the light intensity—was supplied to the
algae. The light intensity was as described above with amplitude
of the harmonic signal equal to . The period of this
signal was changed as described below. The measured values
are summarized in the following table:

It is important at this stage to point out that these experimental
date have an illustrative and testing purpose only. To determine
the coefficients and of (13) with a sufficient precision, one

Fig. 4. Change in the parameter p .

Fig. 5. Decrease of the penalty.

has to take a much more extensive amount of measured data.
Moreover, for the sake of simplicity, we restricted ourselves to
the case of determining the value of the constant ; the product
of the parameters was set equal to 1/8000, which is the
value probably very close to the true one, as it corresponds to
the time constant of 30 min of the exponential decay of under
constant irradiance , see (20). Optimization of both
parameters would be possible if a sufficient amount of data is
available and a more sophisticated method for numerical opti-
mization is implemented. (The method used to obtain the sim-
ulations in this paper was the one-dimensional gradient-based
optimization.) It is worth pointing out that the shape of the in-
volved expressions (the penalty functional and the center man-
ifold equation) allows us to find equations for the derivatives of
the minimized quantity with respect to the parameters. Hence,
application of a gradient-based method is straightforward.

To avoid oscillations around a minimum that can sometimes
occur during numerical optimization, a rather conservative set-
ting of the numerical optimization method was used. However,
this resulted in a slow speed of the algorithm. Thus, it was
stopped before a near optimum was found. The change of the
parameter can be seen in Fig. 4. Fig. 5 demonstrates how the
penalty [(26)] decreases. One can see that the decrease of the
value of the penalty slows down. Further changes of the param-
eter do not cause a significant decrease of the penalty—in

Authorized licensed use limited to: UTIA. Downloaded on August 26, 2009 at 03:18 from IEEE Xplore.  Restrictions apply. 



REHÁK et al.: MODEL FOR PHOTOSYNTHESIS AND PHOTOINHIBITION: PARAMETER IDENTIFICATION BASED ON RESPONSE MEASUREMENT 107

Fig. 6. State x .

other words, the model already fits the given data quite well. In-
deed, one has to realize that penalty does not have in the real case
an optimum at zero, as the corresponding experimental mea-
surements may carry the error. The seemingly minor penalty
change from 0.17455 to 0.1725 is caused by the fact that the ini-
tial parameter approximation was taken already as the best avail-
able estimates known from literature. Therefore, Fig. 5 shows
convincingly that those best available estimates were further im-
proved (note the clear distinction between the penalty decrease
up to the fifth iteration and its constant value after the sixth itera-
tion). The periodic state of the model, if forced by the described
input signal, can be seen in Fig. 6. Here, the evolution of the
state is depicted. (This state describes the oxygen production
rate. It is exactly the quantity that was used to gain the data for
the parameter identification.) This figure was obtained using the
formula (24) through the computed functions and .

V. CONCLUSION

In this paper, a novel methodology for nonlinear identification
based on the prediction of the response to harmonic forcing of a
nonlinear system via its input channel was introduced. Its main
purpose was to identify the model of microalgal growth that may
further serve for optimizing photosynthetic production of real
biotechnological plants.

Our future goals are related to the further experimental veri-
fication of the presented approach: 1) to test our method of the
parameter estimation of PSF model parameters in the other mi-
croalgal species and 2) to study the behavior of PSF model pa-
rameters in a far time horizon, which corresponds to the photo-
acclimation process. For both purposes, more extensive experi-
ments will be prepared, encouraged by the results presented in
this paper.
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