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Abstract

The paper contributes to the characterization of the convex set of all prob-
abilities dominated by a possibility measure on a finite set. In particular,
a lower and an upper bound for the number of extreme points of this con-
vex set are derived by exploiting the geometrical nature of the problem
alone and it is shown that in some cases the upper bound leads to a better
estimate than the exponential bound of Miranda et al. [7].

1 Basic Concepts

Basic definitions and concepts of possibility theory [4] will be recalled at first.
Let X = {x1, . . . , xn} be a non-empty set. Throughout the paper we assume
that n ≥ 2. A possibility measure on 2X is a mapping Π : 2X → [0, 1] such
that Π(∅) = 0 and for every A,B ⊆ X, we have Π(A ∪B) = max(Π(A),Π(B)).
In this paper only so-called normal possibility measures satisfying Π(X) = 1
are considered. A possibility distribution on X is a mapping π : X → [0, 1]
defined by π(x) = Π({x}), for every x ∈ X. Without loss of generality we
may assume that π(x1) ≤ · · · ≤ π(xn) = 1 and denote πi = π(xi), for every
i = 1, . . . , n. Any possibility measure Π on 2X is thus uniquely determined by
a point (π1, . . . , πn−1, 1) ∈ Rn.

We denote by P the set of all finitely additive probability measures on
2X dominated by Π, that is, for each P ∈ P and every A ⊆ X, we have
P (A) ≤ Π(A). Let pi = P ({xi}), i = 1, . . . , n. Every probability P on 2X then
uniquely corresponds to a point (p1, . . . , pn) ∈ Rn. It was proven in [5] that

P ∈ P if and only if
i∑

j=1

pj ≤ πi, i = 1, . . . , n− 1.
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Hence every probability from P is in one-to-one correspondence with a point
(p1, . . . , pn) ∈ Rn satisfying the following conditions:

pi ≥ 0, i = 1, . . . , n,
n∑

i=1

pi = 1,

i∑

j=1

pj ≤ πi, i = 1, . . . , n− 1.

Since pn is uniquely determined by the equation pn = 1−∑n−1
i=1 pi, we can write

equivalently

pi ≥ 0, i = 1, . . . , n− 1,

i∑

j=1

pj ≤ πi, i = 1, . . . , n− 1.
(1)

The set defined by the system of inequalities (1) is clearly a convex polytope in
Rn−1. Notice that its dimension can be far less than n− 1 due to the presence
of zeros in (π1, . . . , πi−1). Also observe that its geometrical structure is not in
general transparent as some of the inequalities in (1) can be redundant in the
sense that their omission doesn’t change the set of solutions of (1).

2 The Result

In the next paragraph we are going to find a more convenient representation of
the set defined by the inequalities (1).

Let i0 = min{i ∈ {1, . . . , n − 1} | πi > 0}. We may assume that such i0
exists since otherwise the possibility measure Π dominates only the probability
measure given by pn = 1 and P is a singleton. Put

S =

{
{i ∈ {i0 . . . , n− 2} | πi+1 > πi} ∪ {n− 1}, if n− 2 ≥ i0,

{n− 1}, otherwise.

Observe that πk > 0 for each k ∈ S, and if k < l with k, l ∈ S, then πk < πl.

Lemma 1. The system of n− i0 + |S| inequalities

pi ≥ 0, i ∈ {i0, . . . , n− 1},
k∑

j=i0

pj ≤ πk, k ∈ S,
(2)

is irreducible.
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Proof. For each m ∈ {i0, . . . , n− 1} consider the system of inequalities

pi ≥ 0, i ∈ {i0, . . . , n− 1} \ {m},
k∑

j=i0

pj ≤ πk, k ∈ S.
(3)

It is clear that any (pi0 , . . . , pn−1) ∈ Rn−i0 such that pi < 0, whenever i =
m, and pi = 0, otherwise, is a solution of (3) that is not a solution of (2).
Analogously, for each m ∈ S consider the system of inequalities

pi ≥ 0, i = i0, . . . , n− 1,

k∑

j=i0

pj ≤ πk, k ∈ S \ {m}. (4)

Note that (4) has a solution with the property pi > πm, whenever i = m, and
pi = 0, otherwise, which is not a solution of (2).

Lemma 2. Let I ⊆ {i0, . . . , n − 1} and K ⊆ S with |I| + |K| = n − i0. If the
system of linear equations with |I|+ |K| variables

pi = 0, i ∈ I, (5a)
k∑

j=i0

pj = πk, k ∈ K, (5b)

has the unique solution (pi0 , . . . , pn−1), then

(i) pm = 0 if and only if m ∈ I;

(ii) if k, l ∈ K are such that k + 1 < l and K ∩ {k + 1, . . . , l − 1} = ∅, then
there is exactly one variable taking non-zero value among pk+1, . . . , pl.

Proof. Since the system of linear equations (5a)-(5b) is uniquely solvable, each
linear equation from (5b) determines — after substituting all zero variables pi,
i ∈ I into (5b) — a value of some variable pm for m ∈ {i0, . . . , n − 1} \ I. To
prove (i) it is enough to note that the right-hand sides of linear equations from
(5b) are positive and if k < l for k, l ∈ K, then πk < πl. Hence pm > 0 whenever
m ∈ {i0, . . . , n− 1} \ I. The assertion of (ii) follows analogously.

Theorem 1. The set PPP of solutions of the system of inequalities (2) is a simple
(n− i0)-dimensional convex polytope in Rn−i0 , which has precisely n− i0 + |S|
facets and each of them is given by PPP∩KKK, where either KKK = {ppp ∈ Rn−i0 | pi = 0}
for some i ∈ {i0, . . . , n − 1} or KKK = {ppp ∈ Rn−i0 | ∑k

j=i0
pj = πk} for some

k ∈ S.
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Proof. Since PPP is defined by the system of inequalities (2), it is clear that PPP is
a convex polytope in Rn−i0 . The set PPP has a dimension n− i0 since there exists
an affine basis {bbb1, . . . , bbbn−i0+1} of Rn−i0 formed by elements of PPP : for every
bbbi = (bi

i0
, . . . , bi

n−1), where i = 1, . . . , n− i0, put

bi
j =

{
πi0 , if j = i + i0 − 1,
0, otherwise,

j = i0, . . . , n− 1,

and bbbn−i0+1 = (0, . . . , 0). It is clear from the definition of points bbbi that the
set {bbb1, . . . , bbbn−i0+1} is an affinely independent subset of PPP and hence it is an
affine basis of Rn−i0 . The number of facets and their complete characterization is
a classical result for convex polytopes given by irreducible system of inequalities:
see, for example, Theorem 8.2 in [3].

To show that PPP is simple we have to verify that every vertex of PPP is contained
in precisely n−i0 facets. Let vvv be a vertex of PPP . Then vvv is the unique solution of
some system (5) of n− i0 linear equations as defined in Lemma 2, which means
that vvv is the only point lying in the intersection of n − i0 facets of PPP . Since
every facet of PPP corresponds to some linear equation, it suffices to show that if
a linear equation is added to (5), then the resulting system has no solution.

If a linear equation pi′ = 0, i′ ∈ {i0, . . . , n− 1} \ I, is added to (5), then the
resulting system has no solution as Lemma 2(i) gives pi′ 6= 0 for (5).

For every k′ ∈ {i0, . . . , n − 1} \K, let a linear equation
∑k′

j=i0
pj = πk′ be

added to (5). If K = ∅, then the extended system is not solvable since the
unique solution of (5) is (0, . . . , 0). Let K 6= ∅.
Case 1. If min K < k′ < max K, then put k1 = max{k ∈ K | k < k′}
and k2 = min{k ∈ K | k > k′} and consider the following subsystem of (5b)
extended with

∑k′

j=i0
pj = πk′ :

pi0 + · · · + pk1 = πk1

pi0 + · · · + pk1 + · · · + pk′ = πk′

pi0 + · · · + pk1 + · · · + pk′ + · · · + pk2 = πk2

According to Lemma 2(ii) there is precisely one variable taking non-zero value
among the variables pk1+1, . . . , pk2 . If it is contained in pk1+1, . . . , pk′ , then,
considering together the second and the third equation, we have πk′ = πk2 ,
which is a contradiction. On the other hand, if the non-zero variable is among
pk′+1, . . . , pk2 , then the second and the first equation gives again a contradiction
πk1 = πk′ .
Case 2. If k′ < min K, then, analogously to the assertion of Lemma 2(ii) and the
previous part of the proof, there must be precisely one variable taking non-zero
value among pi0 , . . . , pmin K , and its value is πmin K . If it is among pi0 , . . . , pk′ ,
then we get the contradiction πk′ =

∑k′

j=i0
pj =

∑min K
j=i0

pj = πmin K . On the
other hand, it the non-zero variable is among pk′+1, . . . , pmin K , then πk′ =∑k′

j=i0
pj = 0, which is again a contradiction.

Case 3. If k′ > maxK, then pj = 0 for each j ∈ {max K + 1, . . . , k′} because
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(5) is uniquely solvable and thus
∑max K

j=i0
pj = πmax K < πk′ =

∑k′

j=i0
pj =∑max K

j=i0
pj , which is contradictory.

Theorem 2. Let extP be the set of all extreme points of the convex set P of
all finitely additive probabilities dominated by a possibility measure. Then

(n− i0 − 1)(n− i0 + |S|)− (n− i0 + 1)(n− i0 − 2)
≤ | ext P| ≤(

n− i0 + |S| − r1 − 1
r2

)
+

(
n− i0 + |S| − r2 − 1

r1

)
,

where r1 is the greatest integer such that r1 ≤ n−i0−1
2 , and r2 is the greatest

integer such that r2 ≤ n−i0
2 .

Proof. Clearly, the set P can be viewed as the set of points in Rn−1 defined by
(1) since the two convex sets are affinely isomorphic; the latter is also affinely
isomorphic with PPP under the mapping

(pi0 , . . . , pn−1) ∈ PPP 7→ (0, . . . , 0︸ ︷︷ ︸
i0−1

, pi0 , . . . , pn−1) ∈ Rn−1.

Hence the convex structure of P is the same as that of PPP ; in particular, the
two convex sets have the same number of extreme points. The lower and the
upper bound for | ext P| are fundamental results in combinatorial theory of
convex polytopes, which are known under the name Lower Bound Theorem (see
[1, 2]) and Upper Bound Theorem (see [6]), respectively. The two inequalities
are thus in this case direct consequences of the characterization of the set PPP by
Theorem 1.

Miranda et al. [7] derived the exponential upper bound 2n−1 bound for
| extP|. It turns out that the upper bound from Theorem 2 can be a better
estimate for the actual number of extreme points: Table 1 documents that this
is the case when the possibility distribution contains many zeros or when the
range of possibility distribution is “poor”.

Example 1. Let π be a possibility distribution on X = {x1, . . . , x5} given by
π1 = 0, π2 = π3 = 1

2 , π4 = 3
4 , and π5 = 1. We have i0 = 2 and S = {3, 4}.

Hence we obtain the irreducible system of inequalities

p2 ≥ 0, p3 ≥ 0, p4 ≥ 0,

p2 + p3 ≤ 1
2
,

p2 + p3 + p4 ≤ 3
4
,

(6)

which defines the 3-dimensional convex polytope

PPP = {ppp = (p2, p3, p4) ∈ R3 | ppp is a solution of (6)}.
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n i0 |S| Lower Bound Upper Bound 2n−1

4 1 3 8 8 8
4 1 2 6 6 8
4 1 1 4 4 8
4 2 2 4 4 8
4 2 1 3 3 8
5 1 4 14 20 16
5 1 3 11 14 16
5 1 2 8 9 16
5 2 3 8 8 16
10 1 9 74 1430 512
10 1 7 58 660 512
10 1 6 50 420 512

Table 1: Comparison of the upper bounds

Note that the inequality p2 ≤ 1
2 was redundant in the description of PPP . The

extreme points of PPP are the following: ppp1 = (0, 0, 0), ppp2 = (0, 0, 3
4 ), ppp3 = (0, 1

2 , 0),
ppp4 = (0, 1

2 , 1
4 ), ppp5 = ( 1

2 , 0, 0), ppp6 = ( 1
2 , 0, 1

4 ). While the upper bound for the
number of extreme points of Miranda et al. [7] equals 2n−1 = 16, the lower and
the upper bound in Theorem 2 coincides in this case so that the exact number
of 6 extreme points is recovered.
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Figure 1: Convex polytope PPP from Example 1
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