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Abstract

The contribution describes a method how to enumerate essential graphs.
The method is based on two concepts, boundary vertices and symmetric
vertices. Boundary vertices generalize the concept of terminal vertices
to graphs with directed and undirected edges. Symmetric vertices are
defined recursively as vertices that have symmetric neighbors. Classes
of symmetric vertices allow to count labeled essential graphs. Layers of
boundary vertices together with symmetry allow to find maximal essential
graphs which are canonical representatives and can be used for counting
unlabeled essential graph structures. Possible applications of the work
are discussed. One goal is to enable the introduction of appropriate prior
distributions in the model space for learning conditional independence
structures.

1 Introduction

Conditional independence models—especially Bayesian networks—are the most
successful and popular class of models to represent complex and uncertain
knowledge. It is well known that the representation of conditional indepen-
dence models by Bayesian networks is not unique in the sense that probabilis-
tically equivalent models may have several different graphical representations.
Essential graphs avoid this difficulty. They represent conditional independence
models by graphs containing both directed and undirected edges.

In the present paper we describe methods to enumerate labeled and unla-
beled essential graphs. To our knowledge this problem has not satisfactorily
been solved. Important contributions were made by Gillispie and Perlman [3]
and by Steinsky [14, 15].

Before going into details we explain why we think that enumerating essential
graphs is important.

1. First of all, we are concerned with the enumeration of essential graphs
and not of Bayesian networks for two reasons: (i) the number of Bayesian
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networks (or equivalently, of directed acyclic graphs) with n variables is
known [12] and (ii) Bayesian networks are completely inappropriate for
counting conditional independence models because equivalent models are
counted several times. Essential graphs were introduced [1] to avoid the
problem of treating equivalent models as though they were different. Es-
sential graphs do not lead to multiple counts.

2. How do we evaluate how well a model “fits” the data? Unfortunately,
often local criteria are used for model evaluation. Typical local criteria
are testing independence conditions at individual vertices in a Bayesian
network. This leads to many tests with the same data set. The tests are
not independent and this causes a breakdown of the traditional statistical
testing principles.

Model evaluation should be based on holistic criteria. A holistic criterion
is, e.g., the posterior probability of a model given the data, P (Mi|D).
To work with a probability distribution (prior or posterior) on the model
space requires that the model space is known—but this is not the case.
It has been proposed to use uniform distribution over Bayesian networks,
but this is incoherent because of multiple counts. Thus, as a first step
towards a reasonable treatment of prior and posterior distributions, we
must know the model space.

3. Especially for the assessment of appropriate prior distributions knowledge
about the frequency of certain model classes in the set of all possible mod-
els is necessary. Invoking prior information can improve model learning
substantially. We usually know a lot before we start selecting a complex
model for a data set. We have selected the variables, e.g., such that we do
not suppose the empty graph will be the best model. We know something
about the number of components or the connectivity. Sometimes parts of
a model are assumed to be fixed a priori leading to “structural zeros” in
the adjacency matrix. There is a soft transition from “knowing for sure”
(structural zeros) to “knowing nothing” (assigning equal probabilities).

4. For the theory of conditional independence models it is of principle inter-
est to know more about properties that help to structure the model space.
An excellent example is model inclusion. We will see below that there
are more properties that are useful in evaluating and comparing models.
An important distinction is that between unlabeled and labeled models.
Symmetries will play an essential role in the proposed enumeration meth-
ods. Boundary vertices, a generalization of terminal nodes (as defined for
directed graphs) to essential graphs (containing directed and undirected
edges), will help us to order the models according to levels.

5. Of principle interest is the introduction of representatives. Representatives
introduce a canonical standard order so that one and the same model is
always visually drawn by the same patter or represented by the same
adjacency matrix.
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6. There are promising connections to certain types of random graphs. Monte
Carlo methods in learning Bayesian networks were used [9].

7. Last not least, it is valuable to study the limiting behavior of various
properties as the size of the graphs increases.

2 Essential graphs

Essential graphs (EGs) were introduced by Andersson, Madigan and Perlman
[1]. An EG represents one and only one conditional independence model. Usu-
ally one EG corresponds to several Bayesian networks (BNs). The EG and
the corresponding BNs do all have the same skeleton, that is, each vertex has
the same neighbors, but some of the edges in the EG are undirected. There
are three types of EGs: (i) acyclic directed EGs consisting of directed edges
only, (ii) undirected EGs consisting of undirected edges only, and (iii) hybrids
consisting of both, directed and undirected edges.

The most salient difference between BNs and EGs concerns the conditions
in which a directed edge in a BN becomes an undirected edge in an EG. To
define these conditions Andersson et al.[1] introduced the concepts of weakly
and strongly protected arcs.

Definition 1 (Weakly protected arc) Let G(V, E) be a BN, {h, t, p, c} ⊆ V
four vertices in it, and t → h ∈ E be an arc from (tail) t to (head vertex) h.
The arc t → h is weakly protected if one of the following conditions holds:

Grandparent-parent condition t has a parent p that is not a parent of h,

p t h

Vee-condition h has a parent p that is not a parent of t,

p t h

Grandparent-grandchild condition t and h have a common child c.

t p h

For BNs only weakly protected arcs are relevant. In the case of EGs, though,
one more condition involving undirected edges is relevant.

Definition 2 (Strongly protected arc) The arc t → h is strongly protected
if

Weakly protected the arc is weakly protected, and if
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Diagonal t has two (undirected) siblings, s1 and s2, that both are parents of h,
but are not mutually connected by an edge.

t s1 s2 h

It is also useful to introduce unprotected arcs:

Definition 3 (Weakly unprotected arc) In a BN t → h is unprotected if

Wedge t has two unconnected children, h and c

Moral child t and h have a common child c.

In these definitions the application of Shachter’s theorem of arc reversal
[13] for the special case of equal parents plays an important role. Shachter’s
theorem says that if an arc a → b is reversed so that a ← b, then all parents
of b now also point to a and all parents of a point to b; that is, each node
“inherits” its parents to the other one. The edged to these parents must be
newly added to the graph, thus changing the skeleton of the graph. Arc reversal
does not induce such additional new arcs if a and b must have the same parents
(except the relation between a and b themselves). If two vertices have the same
parents, then arc reversal does not change the probabilistic properties of the
independence model.

3 Boundary vertices

In a directed graph a vertex without children is a terminal node or a sink. This
concept is extended so that it can be applied to essential graphs. In an essential
graph a boundary vertex is terminal in at least one of its equivalent BNs. If
all undirected edges in an EG are replaced by directed arcs so that the EG is
transformed into one of its equivalent BNs, then a vertex is a boundary vertex
if there is at least one BN in which it is a terminal node.

A boundary vertex can be identified in a BN or in an EG with the help of
the following definition:

Definition 4 In a BN (in an EG) a vertex is a boundary vertex if it has no
weakly (strongly) protected child.

An isolated vertex having no neighbors is a boundary vertex. All vertices in a
complete component of a BN (having only undirected edges in the corresponding
EG) are boundary vertices.

Boundary vertices may easily be identified when the conditional indepen-
dence model is represented by a perfect sequence [8]. In perfect sequences a
boundary vertex is a vertex occurring only once in the whole sequence [7].
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0 1 2 . . . . . . n− 1
0
1 20

2 21 22

. . . . . . . . . . . . . . .

n− 1 . . . . . . . . . . . . 2(n
2)

Table 1: Weights to order the vertices in an adjacency matrix. Low numbers
correspond to high weights and vice versa so that the matrix will be maximized
by 1s top-down and from left to right.

4 Layers

We use the boundary vertices to partially order the vertices of a BN (or an EG).
For a given graph we first collect the set of all its boundary vertices an put them
in layer 1. We next remove the vertices in this set from the graph and collect
the boundary vertices of the remaining graph in layer 2. We repeat finding and
removing sets of boundary vertices iteratively till the graph is empty.

The set of boundary vertex of an EG is called a layer. A sequence of layers
L1, L2, . . . , Lm is obtained by first finding Lm, then removing of all vertices in
Lm from EG, finding Lm−1 of the remaining graph and repeating this until the
remaining graph is empty. The sequence of layers induces a partial order on the
vertices. Throughout we order the vertices layer-wise increasingly (from left to
right), so that the vertices in L1 are assigned ascending indexes 1, . . . , |L1| etc.
At present the indexes within the layers are arbitrary. Below we will introduce
an ordering also within the layers.

In an EG in which the vertices are ordered by layers all arcs point into one
direction. We will draw all arcs from left to right. To represent the graph only
the lower left half of the adjacency matrix is needed. The number of possible
orderings of a BN is obtained by the product |L1|! |L2|! |Lm|! The orderings may
be represented in a tree. Each ordering corresponds to an adjacency matrix and
is a topological sort of the graph. From now on we assume that the EG is
ordered by layers and labeled from 1 to n 1.

To designate a canonical ordering of the vertices in the set of possible or-
derings a function is defined on the adjacency matrix that assigns a number to
each 0-1-pattern in the adjacency matrix. It is convenient to use the decimal
number that encodes the binary number that corresponds the cells of the “un-
folded” matrix. This corresponds to taking the sum over a powers of 2 code.
For one pattern of 0s and 1s the function obtains a maximum and the according
pattern is used to define a representative graph. Enumerating representatives
is equivalent to enumerating (unlabeled) EGs.

Traversing the tree of boundary vertices corresponds to working through the
cross product of the permutations of the vertices in the various layers. One way

1or 0 to n− 1 as we are used to C/++ style counting
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to find representatives and to enumerate essential graphs is to generate (not
necessarily all) within-layer permutations and to test for a maximum of the
function. This is what we actually do to check algorithms for better methods—
not very efficient but foolproof.

5 Symmetry

A main disadvantage of the method to enumerate EGs described in the pre-
vious section is that it is not unitive, it does not use a visually or otherwise
easily identifiable property. Seeing many examples of representatives and non-
representatives, we hit upon a criterion that is relatively easy to “see”, namely
symmetry. Symmetries in an EG allow to exchange vertices along with their
adjacencies without changing the (unlabeled) structure.

Two vertices can change their position if they both belong to the same
layer. Moreover, the adjacencies of the two vertices must map in a one-one
way. Otherwise one vertex would have an adjacency with no corresponding
adjacency in the second vertex. Thus, the two vertices must both have the same
number of adjacencies in each of the layers. In previous work we incorrectly used
this cardinality criterion—called the “signature” of a vertex 2—to find identical
structures. Unfortunately though, having the same signature is only a necessary
but not a sufficient condition for the exchangeability of two vertices.

Definition 5 (Symmetry) Two vertices Xi and Xj are symmetric, denoted
by sym(Xi, Xj),

1. if they both are in the same layer and have the same number of neighbors
in this layer, or

2. if their neighbors are pairwise symmetric.

For a given EG we find the symmetric vertices iteratively. In the first step we set
sym(i,j) = true if Xi and Xj have the same number of neighbors in the layer
to which they both belong. If they are not in the same layer we set sym(i,j)
= false. In the second step all pairs of vertices not having pairwise symmetric
neighbors are set to sym(i,j) = false. The second step is repeated until the
resulting matrix of pairwise symmetries does not change any more.

6 Enumerating essential graphs

Symmetry helps to find representatives and to find algorithms in many enumer-
ation problems. An excellent treatment of this topic is given by Williamson [17,
chapter 4]. We first turn to the problem of how many distinguishable labellings
a given EG has. With the help of the symmetry classes the answer is easy.

2The signature of a vertex Xi in an EG with m layers L1, L2, . . . , Lm is a vector consisting
of the number of adjacencies in each of the layers, sig(Xi) = (|L1|, |L2|, . . . , |Lm|.)
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We collect mutually symmetric vertices in symmetry classes. The cardinality
of these classes is denoted by σ1, σ2, . . . , σq. We obtain the following result:

Theorem 1 (Number of labelings of an EG) The number of labellings of
a given EG, G, with n−1 vertices, q symmetry classes with cardinalities σ1, σ2, . . . , σq

is
λ =

n!
σ1! σ2! · · ·σq!

.

If there are no symmetries, then there are n! different labellings of n objects.
If σ1 of them are indistinguishable, then there are σ1! permutations that count
only as one pattern so that there now are only n!

σ1!
distinguishable labellings etc.

for the remaining symmetry classes.
The enumeration of unlabeled EGs is more difficult. Symmetries will also be

used to count unlabeled EGs. Switching the positions of two symmetric vertices
is an operation that, while acting on an EG, leaves its shape invariant.

We follow the principle that of two symmetric vertices, the left vertex is
always “served” first in the sense that it connects to a predecessor or a successor
in the graph.

Now the following fact is obvious: In an EG with linearly ordered vertices
X0, X1, . . . , Xn−1 a vertex at position u may move to position i, i < u, without
changing the structure of the graph left of position i if Xu and Xi have the
same adjacencies in the subgraph left of position i. In a BN we would say, that
Xu and Xi have the same parents. It is also obvious that in the general case
sameness is replaced by symmetry.

This property is exploited to select a “maximal” linear order for the vertices
of an EG. An order is maximal if, where ever possible, all edges are at their
most left hand side position. This is equivalent to preferring adjacency matrices
with 1s at the top and on left hand side positions, the weights following powers
of 2 as shown in Table 1.

We denote non-adjacencies by Xi t Xj and adjacencies (directed or undi-
rected edges) by Xu ⇀ Xv. Moreover, we say

1. edge (Xj , Xi) dominates edge (Xj , Xu), if u < i and

2. edge (Xj , Xi) dominates edge (Xv, Xi), if j < v.

j i u j u i

j v i v j i

1)

2)

bottom-up condition

right-left condition

Figure 1: Left the two elementary non-maximal patterns; right the correspond-
ing maximal patterns after moving symmetric vertices to the left hand side.
Symmetric vertices have filled dots.
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We introduce the following definition:

Definition 6 (Maximal EG) An EG with linearly ordered vertices X0, X1,
. . . , Xn−1 is maximal if

1. there is no triple (Xj , Xi, Xu) with j < i < u and Xj tXi and Xj ⇀ Xu,
such that sym(Xi, Xu) in the subgraph induced by X0, X1, . . . , Xi, Xu, but
without the edge (Xj , Xu), Gu\(Xj , Xu), and

2. there is no triple (Xj , Xv, Xi) with j < v < i and Xj tXi and Xv ⇀ Xi,
and

(a) sym(Xv, Xj) in the subgraph induced by (X0, X1, . . . , Xj , Xv), but
without the edge (Xv, Xi), Gv\(Xv, Xi), and

(b) there exists a subset in Xv+1, . . . , Xn−1 such that to each vertex in
Xv+1, . . . , Xi there corresponds a vertex in Xv+1, . . . , Xn−1 that has
the same or dominant edges in the subgraph induced by Xv+1, . . . , Xi.

The two conditions correspond to the two patterns shown in Figure 1, where
the symmetric vertices are marked by filled dots. Condition 2a) ensures that
there exists a permutation that keeps the structure between position v and i
invariant or improves it while the structure left of v improves.

In the adjacency matrix we test the two conditions in the following way:

Bottom-up We build the subgraph G′ by setting all rows and columns between
positions i and u to 0, also all rows below u, and also cell (i, j). If if in G′

sym(Xk, Xi), then the EG is not maximal.

Right-left We build a subgraph G′ by setting all rows and columns between
positions v and i to 0, also all rows below i, and also cell (i, j). If in
G′ sym(Xv, Xj) holds, then we first reset the adjacency matrix and then
check whether there is a 1-1 mapping from the rows between position v
and i to a subset of rows below v when Xi and Xj switch their positions.
If there exists such a mapping, then the EG is not maximal.

The second condition looks more complicated than it (computationally) is.
Usually several vertices are required that successively switch their positions

to obtain the maximal representative—corresponding to permutations of the
vertices with several inversions. In a non-maximal EG, though, there must
always be at least one inversion that moves the start or the end of an edge to
the left hand side and this inversion corresponds either to a bottom-up or right-
left move in the adjacency matrix. The procedure described only rejects non-
maximal structures. To perform all necessary permutational steps to transform
a given EG into its representative requires to apply the procedure recursively.

We give two examples how to test whether a given EG is maximal. The
first one explains the bottom-up condition. Figure 3 shows a non-maximal
graph. Vertex 4 and vertex 6 are symmetric in the subgraph induced by their
predecessors (Figure 3). This subgraph is obtained by overwriting row 5 by
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0 1 2 3 4 5
0
1 0
2 0 0
3 0 0 0
4 1 1 0 0
5 0 1 1 1 0

Table 2: Adjacency matrix of a non-maximal EG. If row 4 & 5 and columns 2
& 3) switch positions the structure becomes maximal

row 6 and deleting the row 6. The edge (1, 6) may therefore be changed to
(1, 4). Note that the resulting structure would require more changes to become
maximal. The maximal permutation is (1, 0, 2, 3, 6, 4, 5). To reject the original
structure, though, one violation of the maximality principle is sufficient.

As a second example, Table 4 shows an adjacency matrix in which the 0 in
cell (5, 0) can be replaced by moving the 1 in cell (5, 2) to the left. This leaves
the entries in the part above row 5 unchanged. Figure 4 shows the subgraph
induced by the predecessors of vertex 5. Note that it does not contain the
critical edge (2, 4). To test whether there is a “better” position for this edge we
have to omit it out for a moment. The maximal permutation for this example is
(2, 3, 0, 1, 4, 5, 6). Again, one violation of the maximum condition is sufficient
to reject the structure.

We state the following two consequences:

1. The number of unlabeled EGs is equal to the number of maximal EGs.

2. The total number of labeled EGs with a given number of vertices is equal
to the sum of the number of labellings of all unlabeled structures.

0 1 2 3 4 5

Figure 2: Essential graph associated with the adjacency matrix of Tabel 2. The
arc from 3 to 5 is not maximal and should connect 2 and 4 to make the graph
maximal
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0 1 2 3 4 5 6
0
1 0
2 1 1
3 0 0 0
4 1 0 0 0
5 1 0 0 0 0
6 0 1 1 1 0 0

Table 3: Adjacency matrix of a non-maximal EG, bottom-up condition. When
vertex 6 moves to position 4 row 4 gets a higher evaluation while leaving rows
0, 1, 2, and 3 unchanged; the 0 in cell (4, 2) is then replaced by the 1 from cell
(6, 2).

0 1 2 3 4 5 6

Figure 3: Subgraph induced by the predecessors of vertex 4 and 6 of the example
shown in Table 3. The symmetry of 4 and 6 is obvious.

0 1 2 3 4 5 6
0
1 1
2 0 0
3 0 0 1
4 1 0 1 0
5 0 1 1 0 0
6 0 0 0 1 0 0

Table 4: Adjacency matrix of a non-maximal EG, right-left condition. When
vertex 2 moves to position 0 row 5 gets a higher evaluation while leaving rows
0, 1, 2, 3, and 4 unchanged. The 0 in cell (5, 0) is replaced by the 1 from cell
(5, 2):

0 1 2 3 4 5 6

Figure 4: Subgraph induced by the predecessors of vertex 0 and 4 of the example
shown in Table 4. The symmetry of 0 and 2 is obvious.
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7 Discussion

At present we are writing a computer program that generates and enumer-
ates maximal EGs. We are exploiting the fact that maximal structures must
always be extensions of smaller maximal structures. It is thus possible to gen-
erate EGs that grow vertex by vertex top-down in the adjacency matrix. We
count the number of different structures for essential graphs with one compo-
nent only. It cannot be excluded that with the help of boundary vertices and
symmetry formulas may be found that allow to calculate cardinalities. The
property of boundary vertices, layers, and symmetry are easily translated into
representations by perfect sequences. Perfect sequences may be more efficient
for algorithms than adjacency matrices.

The representation of Bayesian networks and essential graphs by their canon-
ical form offers the possibility of standardizing visual representations. In stan-
dardized representations two different pictures depict two different models.

Our ultimate motivation is to find a method that—from a Bayesian perspec-
tive of learning model structures—allows a satisfactory treatment of probability
distributions over sets of structures. In the literature it has repeatedly been
pointed out [4] that the number of models is so huge that a straightforward
statistical Bayesian approach to model learning is prohibited. Structuring the
model space hierarchically and working with conditional prior or posterior dis-
tributions may help to overcome some of these difficulties.

There are fields in which very complex models are inferred from the data, but
where there are chronic difficulties to replicate the inferred models. Examples
can be found in behavioral genetics and in fMRI-studies. Low model reliability
may be a consequence of complexity. If there is a conflict between complexity on
the one hand and sound inference methods, we prefer simple models and sound
inference. Improved methods for learning conditional independence models may
help to overcome some of these difficulties. Being able to evaluate and compare
the probability of models may avoid over-fitting and the pitfalls of non-holistic
analysis.
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