
Evaluating Causal e�e
ts using Chain Event GraphsPeter Thwaites and Jim SmithUniversity of Warwi
k Statisti
s DepartmentCoventry, United KingdomAbstra
tThe Chain Event Graph (CEG) is a 
oloured mixed graph used for the representationof �nite dis
rete distributions. It 
an be derived from an Event Tree (ET) togetherwith a set of equivalen
e statements relating to the probabilisti
 stru
ture of the ET.CEGs are espe
ially useful for representing and analysing asymmetri
 pro
esses, and
olle
tions of implied 
onditional independen
e statements over a variety of fun
tions
an be read from their topology. The CEG is also a valuable framework for expressing
ausal hypotheses, and manipulated-probability expressions analogous to that givenby Pearl in his Ba
k Door Theorem 
an be derived. The expression we derive hereis valid for a far larger set of interventions than 
an be analysed using Bayesian Net-works (BNs), and also for models whi
h have insuÆ
ient symmetry to be des
ribedadequately by a Bayesian Network.1 Introdu
tionBayesian Networks are good graphi
al repre-sentations for many dis
rete joint probabil-ity distributions. However, many asymmet-ri
 models (by whi
h we mean models withnon-symmetri
 sample spa
e stru
tures) 
an-not be fully des
ribed by a BN. Su
h pro-
esses arise frequently in, for example, bio-logi
al regulation, risk analysis and Bayesianpoli
y analysis.In eli
iting these models it is usually sen-sible to start with an Event Tree (Shafer,1996), whi
h is essentially a des
ription ofhow the pro
ess unfolds rather than how thesystem might appear to an observer. Work-ing with an ET 
an be quite 
umbersome, butthey do re
e
t any model asymmetry, bothin model development and in model samplespa
e stru
ture.The Chain Event Graph (Ri

omagno &Smith, 2005; Smith & Anderson, 2006;Thwaites & Smith, 2006a) is a graphi
alstru
ture designed for analysis of asymmetri
systems. It retains the advantages of the ET,whilst typi
ally having far fewer edges andverti
es. Moreover, the CEG 
an be read fora ri
h 
olle
tion of 
onditional independen
eproperties of the model. Unlike Jaeger's veryuseful Probabilisti
 De
ision Graph (2002)

this in
ludes all the properties that 
an beread from the equivalent BN if the CEG rep-resents a symmetri
 model and far more if themodel is asymmetri
.In the next se
tion we show how CEGs
an be 
onstru
ted. We then des
ribe how we
an use CEGs to analyse the e�e
ts of Causalmanipulation.Bayesian Networks are often extended toapply also to a 
ontrol spa
e. When it is validto make this extension the BN is 
alled 
ausal.Although there is debate (Pearl, 2000; Lau-ritzen, 2001; Dawid, 2002) about terminol-ogy, it is 
ertainly the 
ase that BNs are use-ful for analysing (in Pearl's notation) the ef-fe
ts of manipulations of the form Do X = x0in symmetri
 models, where X is a variableto be manipulated and x0 the setting thatthis variable is to be manipulated to. Thistype of intervention, whi
h might be termedatomi
, is a
tually a rather 
oarse manipula-tion sin
e we would need to extend the spa
eto make predi
tions of e�e
ts when X is ma-nipulated to any value. Although there isa 
ase for only 
onsidering su
h manipula-tions when a model is very symmetri
, it istoo 
oarse to 
apture many of the manipu-lations we might want to 
onsider in asym-metri
 environments. We use this paper toshow how CEGs 
an be used to analyse a far



more re�ned singular manipulation in modelswhi
h may have insuÆ
ient symmetry to bedes
ribed adequately by a Bayesian Network.2 CEG 
onstru
tionWe 
an produ
e a CEG from an Event Treewhi
h we believe represents the model (see forexample Figure 1). This ET is just a graph-i
al des
ription of how the pro
ess unfolds,and the set of atoms of the Event Spa
e (orpath sigma algebra) of the tree is simply theset of root to leaf paths within the tree. Anyrandom variables de�ned on the tree are mea-sureable with respe
t to this path sigma alge-bra.
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hine example.Example 1.A ma
hine in a produ
tion line utilises tworepla
eable 
omponents A and B. Faults inthese 
omponents do not automati
ally 
ausethe ma
hine to fail, but do a�e
t the qual-ity of the produ
t, so the ma
hine in
orpo-rates an automated monitoring system, whi
his 
ompletely reliable for �nding faults in A,but whi
h 
an dete
t a fault in B when it isfun
tioning 
orre
tly.In any monitoring 
y
le, 
omponent A is
he
ked �rst, and there are three initial pos-sibilities: A, B 
he
ked and no faults found

(�1 on the ET in Figure 1); A 
he
ked, faultfound, ma
hine swit
hed o� (�2); A 
he
ked,no fault found, B 
he
ked, fault found, ma-
hine swit
hed o� (�3).If A is found faulty it is repla
ed and thema
hine swit
hed ba
k on (vertex v1), andB is then 
he
ked. B is then either foundnot faulty (�4), or faulty and the ma
hineswit
hed o� (�5).If B is found faulty by the monitoring sys-tem, then it is removed and 
he
ked (verti
esv2 and v3). There are then three possibili-ties, whose probabilities are independent ofwhether or not 
omponent A has been re-pla
ed: B is not in fa
t faulty, the ma
hineis reset and restarted (�6); B is faulty, is su
-
essfully repla
ed and the ma
hine restarted(�7); B is faulty, is repla
ed unsu

essfullyand the ma
hine is left o� until the engineer
an see it (�8).At the time of any monitoring 
y
le, thequality of the produ
t produ
ed (�10) is un-a�e
ted by the repla
ement of A unless B isalso repla
ed. It is however dependent on thee�e
tiveness of B whi
h depends on its age,but also, if it is a new 
omponent, on the ageof A; so:�(good produ
t j A and B repla
ed) = �12> �(good produ
t j only B repla
ed) = �14> �(good produ
t j B not repla
ed) = �10An ET for this set-up is given in Figure 1 anda derived CEG in Figure 2. Note that:� The subtrees rooted in the verti
es v4; v5;v6 and v8 of the ET are identi
al (bothin physi
al stru
ture and in probabilitydistribution), so these verti
es have been
onjoined into the vertex (or position) w4in the CEG.� The subtrees rooted in v2 and v3 are notidenti
al (as �11 6= �13; �12 6= �14), butthe edges leaving v2 and v3 
arry identi
alprobabilities. The equivalent positions inthe CEG w2 and w3 have been joined byan undire
ted edge.� All leaf-verti
es of the ET have been 
on-joined into one sink-vertex in the CEG,labelled w1.To 
omplete the transformation, note thatvi ! wi for 0 � i � 3, v7 ! w5 and v9 ! w6.
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hine example.A formal des
ription of the pro
ess is as fol-lows: Consider the ET T = (V (T ); E(T ))where ea
h element of E(T ) has an asso
i-ated edge probability. Let S(T ) � V (T ) bethe set of non-leaf verti
es of the ET.Let vi � vj indi
ate that there is a path join-ing verti
es vi and vj in the ET, and that vipre
edes vj on this path.Let X(v) be the sample spa
e of X(v), therandom variable asso
iated with the vertex v(X(v) 
an be thought of as the set of edgesleaving v, so in our example, X(v1) =fB found not faulty;B found faultyg).For any v 2 S(T ), vl 2 V (T )nS(T ) su
h thatv � vl :� Label v = v�0� Let v�i+1 be the vertex su
h thatv�i � v�i+1 � vl for whi
h there is novertex v0 su
h that v�i � v0 � v�i+1 fori � 0� Label vl = v�m, where the path � 
onsistsof m edges of the form e(v�i; v�i+1)De�nition 1. For any v1; v2 2 S(T ), v1 andv2 are termed equivalent, i� there is a bije
-tion  whi
h maps the set of paths (and 
om-ponent edges)�1 = f�1(v1; vl1) j vl1 2 V (T )nS(T )g onto�2 = f�2(v2; vl2) j vl2 2 V (T )nS(T )g in su
ha way that:

(a)  (e(v�1 i; v�1 i+1)) = e( (v�1 i);  (v�1 i+1))= e(v�2 i; v�2 i+1) for 0 � i � m(�)(b) �(v�1 i+1 j v�1 i) = �(v�2 i+1 j v�2 i)where v�1 i+1 and v�2 i+1 label the same valueon the sample spa
es X(vi�1 ) and X(vi�2 ) fori � 0.The set of equivalen
e 
lasses indu
ed bythe bije
tion  is denoted K(T ), and the ele-ments of K(T ) are 
alled positions.De�nition 2. For any v1; v2 2 S(T ), v1 andv2 are termed stage-equivalent, i� there is abije
tion � whi
h maps the set of edgesE1 = fe1(v1; v1 0) j v10 2 X(v1)g ontoE2 = fe2(v2; v2 0) j v20 2 X(v2)g in su
ha way that:�(v10 j v1) = �(�(v10) j �(v1)) = �(v20 j v2)where v10 and v20 label the same value on thesample spa
es X(v1) and X(v2).The set of equivalen
e 
lasses indu
ed bythe bije
tion � is denoted L(T ), and the ele-ments of L(T ) are 
alled stages.A CEG C(T ) of our model is 
onstru
ted asfollows:(1) V (C(T )) = K(T ) [ fw1g(2) Ea
h w;w0 2 K(T ) will 
orrespond to aset of v; v0 2 S(T ). If, for su
h v; v0, 9a dire
ted edge e(v; v0) 2 E(T ), then 9 adire
ted edge e(w;w0) 2 E(C(T ))(3) If 9 an edge e(v; vl) 2 E(T ) st v 2 S(T )



and vl 2 V (T )nS(T ), then 9 a dire
tededge e(w;w1) 2 E(C(T ))(4) If two verti
es v1; v2 2 S(T ) are stage-equivalent, then 9 an undire
ted edgee(w1; w2) 2 E(C(T ))(5) If w1 and w2 are in the same stage (ie: ifv1; v2 are stage-equivalent in E(T )), andif �(v10 j v1) = �(v20 j v2) then the edgese(w1; w1 0) and e(w2; w2 0) have the samelabel or 
olour in E(C(T )).Note that in our example, w2 and w3 are inthe same stage and that �(v6jv2) = �(v8jv3),�(v7jv2) = �(v9jv3), �(v18jv2) = �(v23jv3), sothe edges e(w2; w4) and e(w3; w4) are
oloured the same, as are the edges e(w2; w5)and e(w3; w6) and as are e(w2; w1) ande(w3; w1).More detail on CEG 
onstru
tion 
an befound in Smith & Anderson (2006), as 
ana detailed des
ription of how CEGs are read.We 
on
lude se
tion 2 of this paper by lookingat two ideas that will be used extensively inthe next se
tion.Firstly, when we say that a position win our CEG or the set of edges leaving whave an asso
iated variable, we are not refer-ing to the measurement-variables of a BN-representation of the problem, ea
h of whi
hmust take a value for any atomi
 event, butto a more 
exible 
onstru
t de�ned throughstage-equivalen
e in the underlying tree. Theexit-edges of a position are simply the 
olle
-tion of possible immediate out
omes in thenext step of the pro
ess given the history upto that position. A setting (or value or level)is then simply a possible realisation of a vari-able in this 
olle
tion.Se
ondly, we use these edge probabilitiesto de�ne the probabilities of 
omposite eventsin the path sigma �eld of our CEG:De�nition 3. For two positions w;w0 withw � w0, let ��(w0 j w) be the probability as-so
iated with the path �(w;w0). Note thatthis will be a produ
t of edge probabilities.De�ne �(w0 j w) ,X�2� ��(w0 j w)where � is the set of all paths from w to w0.

Note that the 
ombination rules for pathprobabilities on CEGs (dire
tly analogous tothose for trees) give us that for any 3 posi-tions w1; w2; w3, with w1 � w2 � w3, we havethat �(w3 j w1; w2) = �(w3 j w2); that is theprobability that we pass through position w3given that we have passed through positionsw1 and w2 is simply the probability that wepass through position w3 given that we havepassed through position w2.3 Manipulations of CEGsThe simplest types of intervention are of theform Do X = x0 for some variable X andsetting x0, and these are really the only in-terventions that 
an be satisfa
torily analysedusing BNs. In this paper we 
onsider a mu
hmore general intervention where not only thesetting of the manipulated variable, but thevariable itself may be di�erent depending onthe settings of other variables within the sys-tem.We 
an model su
h interventions by theprodu
tion of a manipulated CEG Ĉ in par-allel with our idle CEG C. In the interven-tion 
onsidered here every path in our CEG ismanipulated by having one 
omponent edgegiven a probability of 1 or 0. All edges withzero probabilities and bran
hes stemmingfrom su
h edges are removed (or pruned) fromĈ (note that in this paper all edges on anyCEG will have non-zero probabilities). Wewill 
all su
h an intervention a singular ma-nipulation, and denote it Do Int.De�nition 4. A subset WX of positions ofC quali�es as a singular manipulation set if:(1) all root-to-sink paths in C pass throughexa
tly one position in pa(WX), wherew 2 pa(WX) if w � w0 for some w0 2WXand there exists an edge e(w;w0)(2) ea
h position in pa(WX) has exa
tly one
hild in WX , by whi
h we mean that forw 2 pa(WX), there exists exa
tly onew0 2 WX su
h that there exists an edgee(w;w0)A singular manipulation is then an interven-tion su
h that:(a) for ea
h w 2 pa(WX) and 
orrespondingw0 2WX , �̂(w0 j w) = 1



(b) for any w 2 pa(WX) and w0 =2 WX su
hthat w � w0 and there exists an edgee(w;w0), then �̂(w0 j w) = 0, and thisedge is removed (or pruned) in Ĉ(
) for any w =2 pa(WX) and w0 su
h thatw � w0 and there exists an edge e(w;w0),then �̂(w0 j w) = �(w0 j w)where �̂ is a probability in our manipulatedCEG Ĉ.Let WX = fwjg, pa(WX) = fwijg. Ea
h posi-tion in pa(WX) has exa
tly one 
hild inWX soelements of pa(WX) 
an be intially identi�edby their 
hild in WX (ie by theindex j). But a position in WX 
ould havemore than one parent in pa(WX), so we dis-tinguish these parents by a se
ond index i.For ea
h pair (wij; wj) let Xij be the variableasso
iated with the edge e(wij; wj) and xij bethe setting of this variable on this edge.If we also 
onsider a response variable Ydownstream from the set of positions WX ,then we 
an show (using for example Pearl'sde�nition of Do) that:�(y j Do Int)=Xi;j h�(wij j w0) �(y j wj)i (3:1)Pearl's own Ba
k Door expression (below) isa simpli�
ation of the general manipulated-probability expression used with BNs.�(y j Do x0)=Xz �(y j z; x0) �(z) (3:2)Z here is a subset of the measurement-variables of the BN whi
h obey 
ertain 
on-ditions. If Z is 
hosen 
arefully then we 
an
al
ulate �(y j Do x0) without 
onditioningon the full set of measurement-variables.In this paper we use the topology of theCEG to produ
e an analogous expression to(3.2) for our more general singular manipu-lation, by using a set of positions WZ down-stream from the intervention whi
h 
an stand-in for the set of positionsWX used in expres-sion (3.1). As with Pearl's expression, theuse of su
h a setWZ will redu
e the 
omplex-ity of the general expression (3.1) as well as

possibly allowing us to sidestep identi�abilityproblems asso
iated with it.Following Pearl, we have two 
onditions,whi
h if satis�ed, are suÆ
ient for WZ to be
onsidered a Ba
k Door blo
king set. We givethe �rst here, and the se
ond following a fewfurther de�nitions.(A) For all wj 2 WX , every wj � w1 path inC must pass through exa
tly one positionwk 2WZThe obvious notation for use with CEGs is apath-based one. However most pra
titionerswill be more familiar with expressions su
has (3.2), so we here develop a few ideas toallow us to express our 
ausal expression in asimilar fashion. The �rst step in this pro
essis to note that any position w in a CEG hasa unique set q(w) asso
iated with it, where:� Q(w) is the minimum set of variables,by spe
ifying the settings (or values orlevels) of whi
h, we 
an des
ribe the unionof all w0 � w paths� q(w) are the settings of Q(w) whi
h fullydes
ribe the union of all w0 � w pathsFormally this means that:q(w) = [�2�w q(�)where q(�) are the settings on thew0�w path �, and �w is the set of all w0�wpaths.Letting Z(w) be the set of variables en
oun-tered on edges upstream of w, X(w) be the setof variables en
ountered on edges downstreamof w, and R(w) = Z(w)nQ(w), we note thatthe 
onditional independen
e statement en-
oded by the position w is of the form:X(w)q R(w) j q(w)In the CEG in Figure 2 for example,X(w4) q R(w4) j q(w4) tells us that produ
tquality is independent of the monitoring sys-tem responses, given that B is not repla
ed.Note that the de�nition of q(w) meansthat the variable-settings within it might notalways 
orrespond to simple values of the vari-ables within Q(w). None-the-less, we have



found that q(w) is typi
ally simpler than ea
hindividual q(�).We now use the ideas outlined above toexpand the expression (3.1). As the positionwk is uniquely de�ned by q(wk), we 
an write,without ambiguity �(y j wk) = �(y j q(wk)).Using 
ondition (A) we get:�(y j Do Int) (3:3)=Xi;j h�(wij j w0) Xk �(wk; y j wj)i=Xi;j;k �(wij j w0) �(y j wj ; wk) �(wk j wj)=Xi;j;k �(wij j w0) �(y j wk) �(wk j wj)=Xk hXi;j �(wij jw0)�(wkjwj)i�(yjq(wk))The equivalen
e of �(y j wj ; wk) and �(y j wk)is a 
onsequen
e of the equivalen
e of�(w3 j w1; w2) and �(w3 j w2) noted at theend of se
tion 2, and proved in Thwaites &Smith (2006b).We now need a number of te
hni
al def-initions before we 
an introdu
e our se
ond
ondition and pro
eed to our 
ausal expres-sion. Examples illustrating these de�nitions
an be found in Thwaites & Smith (2006b).Now, the position wk 
an also be fully de-s
ribed by the union of disjoint events, ea
h ofwhi
h is (by 
onditions (1) and (A)) aw0 � wij � wk path for some wij 2 pa(WX).These events divide into 2 distin
t sets:(1) w0 � wij � wj � wk paths(2) paths that do not utilise the xij edge whenleaving wij (formally w0 � wij � w0 � wkpaths where there exists an edge e(wij; w0),but w0 =2WX).We 
an 
ombine the events in set (1) into
omposite or C-paths so that ea
h C-pathpasses through exa
tly one wij and 
an beuniquely 
hara
terised by a pairqij(wk) = (xij ; zij(wk)), where zij is de�ned asfollows:� Zij(wk) is the minimum set of variables,by spe
ifying the settings of whi
h, we
an des
ribe the union of all w0 � wij �wj � wk paths (with Xij ex
luded fromthis set)

� zij(wk) are the settings of Zij(wk) whi
h(with the addition of Xij = xij) fully de-s
ribe the union of all w0 �wij �wj �wkpathsDe�nition 5. We express this formally as:Let qij(wk) = S�2� q(�), where q(�) are thesettings on the w0�wij�wj�wk path �, and� is the set of all w0 � wij � wj � wk pathsin C. Let Qij(wk) be the set of variablespresent in qij(wk).De�ne Zij(wk) as Qij(wk)nXij. Let zij(wk) bethe settings of Zij(wk) 
ompatible with qij(wk).Our Xij; xij ; Zij(wk); zij(wk) are dire
tlyanalogous to Pearl's X;x;Z and z in expres-sion (3.2), and ful�l similar roles in our �nal
ausal expression.The following rather te
hni
al de�nitionsare only required for an understanding of theproof. De�nition 7 deals with the idea of ades
endant whi
h is very similar to the analo-gous idea in BNs, and is needed for
ondition (B).De�nition 6.De�ne q(wij) analogously with the de�nitionof q(w). Let Q(wij) be the set of variablespresent in q(wij).De�ne Qj(wk) as Zij(wk)nQ(wij). Note thatQ(wij) � Zij(wk). Let qj(wk) be the settingsofQj(wk) 
ompatible with zij(wk) (or qij(wk)).We 
an therefore write:zij(wk) = (q(wij); qj(wk))qij(wk) = (xij; zij(wk)) = (q(wij); xij ; qj(wk))We 
an also 
ombine the events in set (2) intoC-paths, ea
h of whi
h 
an be uniquely 
har-a
terised by rij(wk) = S�2M q(�), where q(�)are the settings on the w0 � wij � w0 � wkpath �, andM is the set of allw0�wij�w0�wkpaths in C. We 
an therefore write:q(wk) = h[i;j qij(wk)i[h[i;j rij(wk)iDe�nition 7. Consider variablesA;D; fBmgde�ned on our CEG C. Then D is a de-s
endant of A in C if there exists a sequen
e



of (not ne
essarily adja
ent) edges e1; : : : enforming part of a w0 � w1 path in C wherethe edges e1; : : : en are labelled respe
tivelyb1 j (a; : : :); b2 j (b1; : : :); : : : bn�1 j (bn�2; : : :);d j (bn�1; : : :), or if there exists an edge form-ing part of a w0 � w1 path in C labelledd j (a; : : :); where a; b1; b2; : : : bn�1; d are set-tings of A;B1; B2; : : : Bn�1;D.We are now in a position to state our 2nd
ondition.(B) In the sub-CEG Cij with wij as root-node,Qj(wk) must 
ontain no des
endants ofXij for all i; j; for ea
h position wkChe
king that 
ondition (B) is ful�lled is a
-tually straightforward on a CEG, espe
iallysin
e we will know whi
h manipulations weintend to investigate, and 
an usually 
on-stru
t our CEG so as to make Qj(wk) as smallas possible for all values of j; k.We 
an now repla
e expression (3.3) by a Ba
kDoor expression for singular manipulations:Proposition 1.�(y j Do Int) (3:4)=Xk hXi;j �(zij(wk))i �(y j q(wk))Proof.Consider�(wk j wj) = �(wk j wij ; wj)= �(q(wk) j q(wij); xij)= ��h [m;n qmn (wk)i [ h [m;n rmn (wk)ijq(wij); xij�=Xm;n �(qmn (wk) j q(wij); xij)+Xm;n �(rmn (wk) j q(wij); xij)sin
e disjoint.= �(qij(wk)jq(wij); xij) + �(rij(wk)jq(wij); xij)= �(qij(wk) j q(wij); xij)= �(q(wij); xij ; qj(wk) j q(wij); xij)= �(qj(wk) j q(wij); xij)

But this is simply the probability thatQj(wk) = qj(wk) given that Xij = xij in thesub-CEG Cij .Condition (B) implies that XijqQj(wk) in Cijsin
e Xij has no parents in this CEG. So weget: �(wk j wj) = �(qj(wk) j q(wij))Substituting this into expression (3.3), we get:�(y j Do Int)=Xk hXi;j �(wij j w0) �(qj(wk) j q(wij))i��(y j q(wk))=Xk hXi;j �(q(wij)) �(qj(wk) j q(wij))i��(y j q(wk))=Xk hXi;j �(zij(wk))i �(y j q(wk)) �It is possible to show that the expression�(y j q(wk)) 
an be repla
ed by a probability
onditioned on a single w0 � wk path, andmoreover that even on that path Y may wellbe independent of some of the variables en-
ountered given the path-settings of the oth-ers | for details see Thwaites & Smith(2006b).We also noted earlier that q(w) = S q(�)is typi
ally simpler than ea
h individualq(�). In most instan
es Pi;j �(zij(wk)) willbe the probability of a union of disjoint eventswhi
h will also typi
ally be simpler than anindividual zij(wk). We 
an dedu
e that 
al
u-latingPi;j �(zij(wk)) is unlikely to be a 
om-plex task.We 
on
lude this se
tion by demonstratinghow expression (3.4) is related to Pearl's Ba
kDoor expression (3.2):Consider the intervention Do X = x0, andlet Xij = X and xij = x0 for all i; j. Combineall our w0 �wij �wj �wk C-paths, and writeSi;j qij(wk) = (x0; z(wk)). Rephrase 
ondi-tions (2) and (B) as:(2) ea
h position in pa(WX) has exa
tly oneof its outward edges in C labelled x0, andthis edge joins the position in pa(WX) toa position in WX



(B) Z(wk) must 
ontain no des
endants of X(where Z(Wk) is de�ned from z(wk) inthe obvious manner)Then with a little work, we 
an repla
e ex-pression (3.4) by:�(y j Do Int)=Xk �(z(wk)) �(y j x0; z(wk))If Z(wk) 
ontains the same variables for all k,and z(wk) runs through all settings of Z(wk)as we run through all wk, then this expressionredu
es to Pearl's expression (3.2).4 Causal Analysis on CEGs and BNsThe prin
ipal advantage that CEGs have overBNs when it 
omes to Causal analysis is their
exibility. In a BN the kind of manipulationswe 
an 
onsider are severely restri
ted (see forexample se
tion 2.6 of Lauritzen (2001) wherehe 
omments on Shafer (1996)), whereas us-ing a CEG we 
an ta
kle not only the 
on-ventional Do X = x0 manipulations of sym-metri
 models, but also the analysis of inter-ventions on asymmetri
 models and manipu-lations where both the manipulated-variableand the manipulated-variable value 
an di�erfor di�erent settings of other variables. It isalso the 
ase that our blo
king sets are setsof values or settings, and do not need to 
or-respond to any �xed subset of the originalproblem random variables.For simpli
ity of exposition in this pa-per we have not fully exploited the potential
exibility of the CEG, 
onsidering only for-mulae asso
iated with a blo
king-set WZ ofpositions downstream of WX . We 
an also
onsider sets of stages upstream of WX , and
ombinations of the two. Also, we have onlydis
ussed one parti
ular fairly 
oarse exam-ple of an intervention. There are often 
ir-
umstan
es where some paths in our CEGare not manipulated at all, for example ina treatment regime where only patients with
ertain 
ombinations of symptoms (ie at 
er-tain positions or stages) are treated. Thereare also non-singular interventions where (forinstan
e) a manipulation, rather than for
-ing a path to follow one spe
i�
 edge at some

vertex, instead provides a probability distri-bution for the outgoing edges of that vertex.So not only are CEGs ideal representa-tions of asymmetri
 dis
rete models, retainingthe 
onvenien
e of a tree-form for des
ribinghow a pro
ess unfolds but also expressing ari
h 
olle
tion of the model's 
onditional in-dependen
e properties, but their event-based
ausal analysis has distin
t advantages overthe variable-based analysis one performs onBayesian Networks.Referen
esA.P. Dawid. 2002. In
uen
e Diagrams for CausalModelling and Inferen
e. International Statisti-
al Review 70.M. Jaeger. 2002. Probabilisti
 De
ision Graphs| Combining Veri�
ation and AI te
hniques forProbabilisti
 Inferen
e. In PGM '02 Pro
eedingsof the 1st European Workshop on Probabilisti
Graphi
al Models, pages 81-88.S.L. Lauritzen. 2001. Causal Inferen
e fromGraphi
al Models. In O.E. Barndor�-Nielsen etal (Eds) Complex Sto
hasti
 Systems. Chapmanand Hall / CRC.J. Pearl. 2000. Causality: models, reasoning andinferen
e. Cambridge University Press.E. Ri

omagno and J.Q. Smith. 2005. The CausalManipulation and Bayesian Estimation of ChainEvent Graphs. CRiSM Resear
h Report no. 05-16, University of Warwi
k.G. Shafer. 1996. The Art of Causal Conje
ture.MIT Press.J.Q. Smith and P.E. Anderson. 2006. Conditionalindependen
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-
epted, subje
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ial Intelligen
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