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Abstract

The Chain Event Graph (CEG) is a coloured mixed graph used for the representation
of finite discrete distributions. It can be derived from an Event Tree (ET) together
with a set of equivalence statements relating to the probabilistic structure of the ET.
CEGs are especially useful for representing and analysing asymmetric processes, and
collections of implied conditional independence statements over a variety of functions
can be read from their topology. The CEG is also a valuable framework for expressing
causal hypotheses, and manipulated-probability expressions analogous to that given
by Pearl in his Back Door Theorem can be derived. The expression we derive here
is valid for a far larger set of interventions than can be analysed using Bayesian Net-
works (BNs), and also for models which have insufficient symmetry to be described

adequately by a Bayesian Network.

1 Introduction

Bayesian Networks are good graphical repre-
sentations for many discrete joint probabil-
ity distributions. However, many asymmet-
ric models (by which we mean models with
non-symmetric sample space structures) can-
not be fully described by a BN. Such pro-
cesses arise frequently in, for example, bio-
logical regulation, risk analysis and Bayesian
policy analysis.

In eliciting these models it is usually sen-
sible to start with an Event Tree (Shafer,
1996), which is essentially a description of
how the process unfolds rather than how the
system might appear to an observer. Work-
ing with an ET can be quite cumbersome, but
they do reflect any model asymmetry, both
in model development and in model sample
space structure.

The Chain Event Graph (Riccomagno &
Smith, 2005; Smith & Anderson, 2006;
Thwaites & Smith, 2006a) is a graphical
structure designed for analysis of asymmetric
systems. It retains the advantages of the ET,
whilst typically having far fewer edges and
vertices. Moreover, the CEG can be read for
a rich collection of conditional independence
properties of the model. Unlike Jaeger’s very
useful Probabilistic Decision Graph (2002)

this includes all the properties that can be
read from the equivalent BN if the CEG rep-
resents a symmetric model and far more if the
model is asymmetric.

In the next section we show how CEGs
can be constructed. We then describe how we
can use CEGs to analyse the effects of Causal
manipulation.

Bayesian Networks are often extended to
apply also to a control space. When it is valid
to make this extension the BN is called causal.
Although there is debate (Pearl, 2000; Lau-
ritzen, 2001; Dawid, 2002) about terminol-
ogy, it is certainly the case that BNs are use-
ful for analysing (in Pearl’s notation) the ef-
fects of manipulations of the form Do X = zq
in symmetric models, where X is a variable
to be manipulated and zy the setting that
this variable is to be manipulated to. This
type of intervention, which might be termed
atomic, is actually a rather coarse manipula-
tion since we would need to extend the space
to make predictions of effects when X is ma-
nipulated to any value. Although there is
a case for only considering such manipula-
tions when a model is very symmetric, it is
too coarse to capture many of the manipu-
lations we might want to consider in asym-
metric environments. We use this paper to
show how CEGs can be used to analyse a far



more refined singular manipulation in models
which may have insufficient symmetry to be
described adequately by a Bayesian Network.

2 CEG construction

We can produce a CEG from an Event Tree
which we believe represents the model (see for
example Figure 1). This ET is just a graph-
ical description of how the process unfolds,
and the set of atoms of the Event Space (or
path sigma algebra) of the tree is simply the
set of root to leaf paths within the tree. Any
random variables defined on the tree are mea-
sureable with respect to this path sigma alge-
bra.

Figure 1. ET for machine example.

Example 1.
A machine in a production line utilises two
replaceable components A and B. Faults in
these components do not automatically cause
the machine to fail, but do affect the qual-
ity of the product, so the machine incorpo-
rates an automated monitoring system, which
is completely reliable for finding faults in A,
but which can detect a fault in B when it is
functioning correctly.

In any monitoring cycle, component A is
checked first, and there are three initial pos-
sibilities: A, B checked and no faults found

(m1 on the ET in Figure 1); A checked, fault
found, machine switched off (m2); A checked,
no fault found, B checked, fault found, ma-
chine switched off (73).

If A is found faulty it is replaced and the
machine switched back on (vertex v;), and
B is then checked. B is then either found
not faulty (m4), or faulty and the machine
switched off (m5).

If B is found faulty by the monitoring sys-
tem, then it is removed and checked (vertices
vy and wv3). There are then three possibili-
ties, whose probabilities are independent of
whether or not component A has been re-
placed: B is not in fact faulty, the machine
is reset and restarted (mg); B is faulty, is suc-
cessfully replaced and the machine restarted
(m7); B is faulty, is replaced unsuccessfully
and the machine is left off until the engineer
can see it (mg).

At the time of any monitoring cycle, the
quality of the product produced (o) is un-
affected by the replacement of A unless B is
also replaced. It is however dependent on the
effectiveness of B which depends on its age,
but also, if it is a new component, on the age
of A; so:
m(good product | A and B replaced) = mi9
> 7(good product | only B replaced) = m4
> m(good product | B not replaced) = myg

An ET for this set-up is given in Figure 1 and
a derived CEG in Figure 2. Note that:

e The subtrees rooted in the vertices vy, vs,
vg and vg of the ET are identical (both
in physical structure and in probability
distribution), so these vertices have been
conjoined into the vertex (or position) wy
in the CEG.

e The subtrees rooted in v9 and v3 are not
identical (as 11 75 13, T12 75 7T14), but
the edges leaving vo and v3 carry identical
probabilities. The equivalent positions in
the CEG w9 and w3 have been joined by
an undirected edge.

e All leaf-vertices of the ET have been con-
joined into one sink-vertex in the CEG,
labelled wso.

To complete the transformation, note that
v; = w; for 0 <1 < 3, v7 = ws and vg — wg.



Figure 2. CEG for machine example.

A formal description of the process is as fol-
lows: Consider the ET T = (V(T), E(T))
where each element of E(T) has an associ-
ated edge probability. Let S(T) C V(T) be
the set of non-leaf vertices of the ET.

Let v; < v; indicate that there is a path join-
ing vertices v; and v; in the ET, and that v;
precedes v; on this path.

Let X(v) be the sample space of X (v), the
random variable associated with the vertex v
(X(v) can be thought of as the set of edges
leaving v, so in our example, X(v;) =
{B found not faulty, B found faulty}).

For any v € S(T), v; € V(T)\S(T') such that
v =<1 :
e Label v = v)°
e Let vy'*!' be the vertex such that
vy! < vy'tt < v, for which there is no
vertex v’ such that v)* < o' < vy\'*! for
1 >0
e Label vy = v,™, where the path A consists
of m edges of the form e(vy’, v)*1)

Definition 1. For any vy, vy € S(T), v; and
v9 are termed equivalent, iff there is a bijec-
tion 1) which maps the set of paths (and com-
ponent edges)

A = {Mi(vi,vy) | v, € V(T)\S(T)} onto
Ao = {Xa(v2,vy,) | v, € V(T)\S(T)} in such
a way that:

(a) llﬁ(e(lejav/\lZ:—i—l)) 6( (U)q )7 ( >\1l+1))
= e(v)," ,1))\2”'1) for 0 <i<m(X)
(b) m(ox, "t [ on, ") = m(oa, "™ | wa,”)
where vy, "1 and v,"*! label the same value
on the sample spaces X(’U)\l) and X(v/\2) for
1 > 0.
The set of equivalence classes induced by
the bijection 1 is denoted K (T'), and the ele-
ments of K (T) are called positions.

Definition 2. For any vy,vs € S(T), v1 and
vy are termed stage-equivalent, iff there is a
bijection ¢ which maps the set of edges

Ey = A{ei(vi,mn') | v’ € X(v1)} onto
Ey = {ea(va,vo’) | vo' € X(vg)} in such
a way that:

m(v1" [ 01) = m(p(vr) | f(v1)) = m(v2" | v2)
where v;’ and vy’ label the same value on the
sample spaces X(v1) and X(vg).

The set of equivalence classes induced by
the bijection ¢ is denoted L(T'), and the ele-
ments of L(T) are called stages.

A CEG C(T) of our model is constructed as

follows:

(1) V(CT)) = K(T) U {wao)

(2) Each w,w' € K(T) will correspond to a
set of v,v' € S(T). If, for such v,v', 3
a directed edge e(v,v') € E(T), then 3 a
directed edge e(w,w') € E(C(T))

(3) If 3 an edge e(v,v;) € E(T) st v € S(T)



and v; € V(T)\S(T), then 3 a directed

edge e(w,we) € E(C(T))

(4) If two vertices v1,v9 € S(T) are stage-
equivalent, then 3 an undirected edge
e(wy,w9) € E(C(T))

(5) If wy and wy are in the same stage (ie: if
vy, vy are stage-equivalent in F(T)), and
if w(vi' | v1) = w(v2' | v2) then the edges
e(wy,w') and e(wsy,ws') have the same
label or colour in E(C(T)).

Note that in our example, wo and w3 are in
the same stage and that 7(vglvy) = w(vg|vs),
m(vrva) = m(vglvs), m(vig|ve) = w(ves|vs), so
the edges e(ws,ws) and e(ws,wy) are
coloured the same, as are the edges e(ws, ws)
and e(ws,wg) and as are e(ws,ws) and
e(ws, Weo)-

More detail on CEG construction can be
found in Smith & Anderson (2006), as can
a detailed description of how CEGs are read.
We conclude section 2 of this paper by looking
at two ideas that will be used extensively in
the next section.

Firstly, when we say that a position w
in our CEG or the set of edges leaving w
have an associated variable, we are not refer-
ing to the measurement-variables of a BN-
representation of the problem, each of which
must take a value for any atomic event, but
to a more flexible construct defined through
stage-equivalence in the underlying tree. The
exit-edges of a position are simply the collec-
tion of possible immediate outcomes in the
next step of the process given the history up
to that position. A setting (or value or level)
is then simply a possible realisation of a vari-
able in this collection.

Secondly, we use these edge probabilities
to define the probabilities of composite events
in the path sigma field of our CEG:

Definition 3. For two positions w,w’ with
w < w', let my(w' | w) be the probability as-
sociated with the path A(w,w’). Note that
this will be a product of edge probabilities.

Define 7(w' | w) £ Zm\(w' | w)
AEA

where A is the set of all paths from w to w'.

Note that the combination rules for path
probabilities on CEGs (directly analogous to
those for trees) give us that for any 3 posi-
tions wy, ws, ws, with wy < wy < ws, we have
that (w3 | wy,wy) = m(ws | we); that is the
probability that we pass through position ws
given that we have passed through positions
wy and wsy is simply the probability that we
pass through position w3 given that we have
passed through position ws.

3 Manipulations of CEGs

The simplest types of intervention are of the
form Do X = xzg for some variable X and
setting xp, and these are really the only in-
terventions that can be satisfactorily analysed
using BNs. In this paper we consider a much
more general intervention where not only the
setting of the manipulated variable, but the
variable itself may be different depending on
the settings of other variables within the sys-
tem.

We can model such interventions by the
production of a manipulated CEG C in par-
allel with our idle CEG C. In the interven-
tion considered here every path in our CEG is
manipulated by having one component edge
given a probability of 1 or 0. All edges with
zero probabilities and branches stemming
from such edges are removed (or pruned) from
C (note that in this paper all edges on any
CEG will have non-zero probabilities). We
will call such an intervention a singular ma-
nipulation, and denote it Do Int.

Definition 4. A subset Wx of positions of

C qualifies as a singular manipulation set if:

(1) all root-to-sink paths in C pass through
exactly one position in pa(Wx), where
w € pa(Wx) if w < w' for some w' € Wx
and there exists an edge e(w,w')

(2) each position in pa(Wy) has exactly one
child in Wx, by which we mean that for
w € pa(Wx), there exists exactly one
w' € Wx such that there exists an edge
e(w,w")

A singular manipulation is then an interven-

tion such that:

(a) for each w € pa(Wx) and corresponding
w € Wx, w(w' |w) =1



(b) for any w € pa(Wx) and w' ¢ Wx such
that w < w' and there exists an edge
e(w,w'), then 7(w' | w) = 0, and this
edge is removed (or pruned) in C

(c) for any w ¢ pa(Wyx) and w' such that
w < w' and there exists an edge e(w, w'),
then 7t(w' | w) = w(w' | w)

where 7 is a probability in our manipulated

CEG C.

Let Wx = {w;}, pa(Wx) = {w;} Each posi-
tion in pa(Wx ) has exactly one child in Wx so
elements of pa(Wx) can be intially identified
by their child in Wx (ie by the
index j). But a position in Wx could have
more than one parent in pa(Wx), so we dis-
tinguish these parents by a second index i.
For each pair (w], wj) let Xi be the variable
associated with the edge e(w], wj) and x; be
the setting of this variable on this edge.

If we also consider a response variable Y
downstream from the set of positions Wy,
then we can show (using for example Pearl’s
definition of Do) that:

7(y | Do Int)

—Z[ wi | wo) w(y | w;)

Pearl’s own Back Door expression (below) is
a simplification of the general manipulated-
probability expression used with BNs.

(3.1)

(y | Do zo)

=3 wly | z.30) 7(2)

Z here is a subset of the measurement-
variables of the BN which obey certain con-
ditions. If Z is chosen carefully then we can
calculate 7(y | Do z() without conditioning
on the full set of measurement-variables.

In this paper we use the topology of the
CEG to produce an analogous expression to
(3.2) for our more general singular manipu-
lation, by using a set of positions Wz down-
stream from the intervention which can stand-
in for the set of positions Wx used in expres-
sion (3.1). As with Pearl’s expression, the
use of such a set Wy will reduce the complex-
ity of the general expression (3.1) as well as

(3.2)

possibly allowing us to sidestep identifiability
problems associated with it.

Following Pearl, we have two conditions,
which if satisfied, are sufficient for Wz to be
considered a Back Door blocking set. We give
the first here, and the second following a few
further definitions.

(A) For all w; € Wy, every w; — ws path in
C must pass through exactly one position
w, € Wy

The obvious notation for use with CEGs is a
path-based one. However most practitioners
will be more familiar with expressions such

s (3.2), so we here develop a few ideas to
allow us to express our causal expression in a
similar fashion. The first step in this process
is to note that any position w in a CEG has
a unique set g(w) associated with it, where:

¢ Q(w) is the minimum set of variables,
by specifying the settings (or wvalues or
levels) of which, we can describe the union
of all wy — w paths

e g(w) are the settings of Q(w) which fully
describe the union of all wg — w paths

Formally this means that:

A€EAy

where ¢(A\) are the settings on the
wg —w path A, and A, is the set of all wy —w
paths.

Letting Z(w) be the set of variables encoun-
tered on edges upstream of w, X (w) be the set
of variables encountered on edges downstream
of w, and R(w) = Z(w)\Q(w), we note that
the conditional independence statement en-
coded by the position w is of the form:

X (w) L R(w) | g(w)

In the CEG in Figure 2 for example,
X (wq) IT R(wyq) | g(wy) tells us that product
quality is independent of the monitoring sys-
tem responses, given that B is not replaced.
Note that the definition of ¢(w) means
that the variable-settings within it might not
always correspond to simple values of the vari-
ables within @Q(w). None-the-less, we have



found that g(w) is typically simpler than each
individual g(\).

We now use the ideas outlined above to
expand the expression (3.1). As the position
wy, is uniquely defined by ¢(wy ), we can write,
without ambiguity 7(y | wx) = 7(y | q(wy)).
Using condition (A) we get:

n(y | Do Int)

—Z[ w) | wo) S w(wpyy | wj)
k
—Z

(3.3)

w) | wo) w(y | wy,wy) w(wy, | w))

wj | wo) (y

= Z [Zﬂ(wﬂwo)ﬁ(wﬂ%) m(ylg(wy))
k

Y]

| wy) m(wy, | wy)

The equivalence of 7(y | wj, wy) and 7(y | wy)
is a consequence of the equivalence of
(w3 | wy,wy) and 7(ws | wy) noted at the
end of section 2, and proved in Thwaites &
Smith (2006b).

We now need a number of technical def-
initions before we can introduce our second
condition and proceed to our causal expres-
sion. Examples illustrating these definitions
can be found in Thwaites & Smith (2006b).

Now, the position wg can also be fully de-
scribed by the union of disjoint events, each of
which is (by conditions (1) and (A)) a
wy — w] — wy path for some wj € pa(Wx).

These events divide into 2 distinct sets:

(1) wo — w; — wj — wy, paths

(2) paths that do not utilise the 3:; edge when

leaving w; (formally wo — w} —w' — wy
paths where there exists an edge e(w], w'),

but w' ¢ Wx).
We can combine the events in set (1) into
composite or C-paths so that each C-path

passes through exactly one w} and can be

uniquely  characterised by a  pair
q;(wg) = (75, ](wk)), where 2} is defined as

follows:
e Zj(wg) is the minimum set of variables,
by specifying the settings of which, we

can describe the union of all wg — wé- —

w; — wy, paths (with X]Z: excluded from
this set)

° 2 “(wy) are the settings of Zi(wk) which
(w1th the addition of X’ =z ) fully de-

scribe the union of all wg — w] —wj — W
paths

Definition 5. We express this formally as:
Let ¢;(wr) = Ujea q(}\), where ¢()) are the
settings on the wo —wj —w; —wy, path A, and

A is the set of all wg — w} — wj — wy, paths

in C. Let Q;(wk) be the set of variables
present in q;(wk)

Define Z}(wy) as Q5 (wr)\X;. Let z;(wk) be
the settings of Z}(wy) compatible with g; (wy).

Our XZ,:B],Z (wy), 2 J( wg) are directly
analogous to Pearl’s X, z, 7 and z in expres-
sion (3.2), and fulfil similar roles in our final
causal expression.

The following rather technical definitions
are only required for an understanding of the
proof. Definition 7 deals with the idea of a
descendant which is very similar to the analo-
gous idea in BNs, and is needed for

condition (B).
Definition 6.
Define g(wj) analogously with the definition
of g(w). Let Q(w ) be the set of variables
present in g(w ])
Define Q;(wy) as Z]’(wk)\Q(w;) Note that
Q(w;) C Z]’(wk) Let g;(wg) be the settings
of Qj(wy,) compatible with z;(wk) (or q;(wk))
We can therefore write:

Zi(wy,) = ((J(wi'), q;(w))

aj(wi) = (7, 25 (wy)) = (q(w), 5, ¢j (wy))
We can also combine the events in set (2) into
C-paths, each of which can be uniquely char-

acterised by r;(wk) = Upen a(p), where g(p)

are the settings on the wy — w; —w' — wy
path p, and M is the set of all wo—w§—w’—wk

paths in C. We can therefore write:

- [gq;xwk)} U [gr;i(wk)}

Definition 7. Consider variables A, D, { By, }
defined on our CEG C. Then D is a de-
scendant of A in C' if there exists a sequence



of (not necessarily adjacent) edges eq,...e,
forming part of a wy — ws path in C where
the edges ej,...e, are labelled respectively
b1 ‘ (a, . .), b2 ‘ (bl, .. .), e bn,1 ‘ (bn,Q, .. .),
d| (bn-1,...), or if there exists an edge form-
ing part of a wg — ws path in C labelled
d | (a,...); where a,by,bo,...by_1,d are set-
tings of A, Bl, BQ, e anl, D.

We are now in a position to state our 2nd
condition.

(B) In the sub-CEG C]Z: with w} as root-node,
Qj(wy) must contain no descendants of
X; for all 4, j, for each position wy

Checking that condition (B) is fulfilled is ac-
tually straightforward on a CEG, especially
since we will know which manipulations we
intend to investigate, and can usually con-
struct our CEG so as to make Q;(wy) as small
as possible for all values of 7, k.

We can now replace expression (3.3) by a Back
Door expression for singular manipulations:

Proposition 1.

7(y | Do Int) (3.4)
—Zﬁj ()] 7y | qlawn))
Proof.
Consider
m(wy | w;) = m(wy | whw;)
= m(q(w) | a(w}), )
= (| U arwn)] u [ U ris)] latwh), )

= Do) | gt} <))
+Z ),x;)

since dlSJOlnt.

= 7 (qj(wp)|q(w}), z5) + 7 (r
m(g;(wr) | qw)), o)
m(q(w)), = ],qg(wk) | q(w
m(q;(wp) | q(w), z5)

(W) | g(w

3 (wi)la(w}), 5)

HED.

But this is simply the probabilify that
Qj(wg) = gj(wy) given that Xi = 7 in the
sub-CEG C7.

Condition (B) implies that X ;11Q;(wy) in C]
since X} has no parents in this CEG. So we
get:

m(wy | wj) = (gj(wy) | g(w}))

Substituting this into expression (3.3), we get:
m(y | D_o Int)
= O[S ) | ) (g ) | qfan)]
ko iy
_ xm(y | q(wy))
= 323 wlatwl) wastwn) | atwl)]
ko iy
xm(y | q(wy))

=Y [E )] 7ty lawe) O
k

i’j

It is possible to show that the expression
7(y | g(wy)) can be replaced by a probability
conditioned on a single wy — wy path, and
moreover that even on that path Y may well
be independent of some of the variables en-
countered given the path-settings of the oth-
ers — for details see Thwaites & Smith
(2006Db).

We also noted earlier that g(w) = q¢())
is typically simpler than each individual
g(A). In most instances >, ; W(z;(wk)) will
be the probability of a union of disjoint events
which will also typically be simpler than an
individual z;(wk) We can deduce that calcu-
lating Z” F(Z; (wy)) is unlikely to be a com-
plex task.

We conclude this section by demonstrating
how expression (3.4) is related to Pearl’s Back
Door expression (3.2):

Consider the intervention Do X = z(, and
let X]Z: = X and 33; =z for all 7, 7. Combine
all our wy — w' — w; — wy C-paths, and write

J
(20, 2(wy))-

Ui,j Q;(wk) =

tions (2) and (B) as:

Rephrase condi-

(2) each position in pa(Wy) has exactly one
of its outward edges in C' labelled zg, and
this edge joins the position in pa(Wx) to
a position in Wx



(B) Z(wg) must contain no descendants of X
(where Z (W) is defined from z(wy) in

the obvious manner)

Then with a little work, we can replace ex-
pression (3.4) by:

7r(y | DO Int)
= Zﬂ(z(wk)) m(y | zo, z(wg))
k

If Z(wy) contains the same variables for all k,
and z(wy) runs through all settings of Z(wy)
as we run through all wy, then this expression
reduces to Pearl’s expression (3.2).

4 Causal Analysis on CEGs and BNs

The principal advantage that CEGs have over
BNs when it comes to Causal analysis is their
flexibility. In a BN the kind of manipulations
we can consider are severely restricted (see for
example section 2.6 of Lauritzen (2001) where
he comments on Shafer (1996)), whereas us-
ing a CEG we can tackle not only the con-
ventional Do X = zy manipulations of sym-
metric models, but also the analysis of inter-
ventions on asymmetric models and manipu-
lations where both the manipulated-variable
and the manipulated-variable value can differ
for different settings of other variables. It is
also the case that our blocking sets are sets
of values or settings, and do not need to cor-
respond to any fixed subset of the original
problem random variables.

For simplicity of exposition in this pa-
per we have not fully exploited the potential
flexibility of the CEG, considering only for-
mulae associated with a blocking-set W of
positions downstream of Wyx. We can also
consider sets of stages upstream of Wx, and
combinations of the two. Also, we have only
discussed one particular fairly coarse exam-
ple of an intervention. There are often cir-
cumstances where some paths in our CEG
are not manipulated at all, for example in
a treatment regime where only patients with
certain combinations of symptoms (ie at cer-
tain positions or stages) are treated. There
are also non-singular interventions where (for
instance) a manipulation, rather than forc-
ing a path to follow one specific edge at some

vertex, instead provides a probability distri-
bution for the outgoing edges of that vertex.

So not only are CEGs ideal representa-
tions of asymmetric discrete models, retaining
the convenience of a tree-form for describing
how a process unfolds but also expressing a
rich collection of the model’s conditional in-
dependence properties, but their event-based
causal analysis has distinct advantages over
the variable-based analysis one performs on
Bayesian Networks.
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