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Abstract

In biomedical domains, free text electronic literature is an important resource for knowl-
edge discovery and acquisition, particularly to provide a priori components for evaluating
or learning domain models. Aiming at the automated extraction of this prior knowledge
we discuss the types of uncertainties in a domain with respect to causal mechanisms,
formulate assumptions about their report in scientific papers and derive generative prob-
abilistic models for the occurrences of biomedical concepts in papers. These results allow
the discovery and extraction of latent causal dependency relations from the domain lit-
erature using minimal linguistic support. Contrary to the currently prevailing methods,
which assume that relations are sufficiently formulated for linguistic methods, our ap-
proach assumes only the report of causally associated entities without their tentative
status or relations, and can discover new relations and prune redundancies by providing
a domain-wide model. Therefore the proposed Bayesian network based text mining is an

important complement to the linguistic approaches.

1 Introduction

Rapid accumulation of biological data and the
corresponding knowledge posed a new challenge
of making this voluminous, uncertain and fre-
quently inconsistent knowledge accessible. De-
spite recent trends to broaden the scope of for-
mal knowledge bases in biomedical domains,
free text electronic literature is still the central
repository of the domain knowledge. This cen-
tral role will probably be retained in the near
future, because of the rapidly expanding fron-
tiers. The extraction of explicitly stated or the
discovery of implicitly present latent knowledge
requires various techniques ranging from purely
linguistic approaches to machine learning meth-
ods. In the paper we investigate a domain-
model based approach to statistical inference
about dependence and causal relations given
the literature using minimal linguistic prepro-
cessing. We use Bayesian Networks (BNs) as
causal domain models to introduce generative
models of publication, i.e. we examine the re-
lation of domain models and generative models
of the corresponding literature.

In a wider sense our work provides support
to statistical inference about the structure of
the domain model. This is a two-step process,
which consists of the reconstruction of the be-
liefs in mechanisms from the literature by model
learning and their usage in a subsequent learn-
ing phase. Here, the Bayesian framework is an
obvious choice. Earlier applications of text min-
ing provided results for the domain experts or
data analysts, whereas our aim is to go one step
further and use the results directly in the sta-
tistical learning of the domain models.

The paper is organized as follows. Section 2
presents a unified view of the literature, the
data and their models. In Section 3 we re-
view the types of uncertainties in biomedical do-
mains from a causal, mechanism-oriented point
of view. In Section 4 we summarize recent ap-
proaches to information extraction and liter-
ature mining based on natural language pro-
cessing (NLP) and “local” analysis of occur-
rence patterns. In Section 5 we propose gen-
erative probabilistic models for the occurrences
of biomedical concepts in scientific papers. Sec-
tion 6 presents textual aspects of the application



domain, the diagnosis of ovarian cancer. Sec-
tion 7 reports results on learning BNs given the
literature.

2 Fusion of literature and data

The relation of experimental data Dy, proba-
bilistic causal domain models formalized as BNs
(G,0), domain literature D%, and models of
publication (G, %) can be approached at dif-
ferent levels. For the moment, let us assume
that probabilistic models are available describ-
ing the generation of observations P(Dy|(G,9))
and literature P(D%,|(GF,601)). This latter
may include stochastic grammars for modeling
the linguistic aspects of the publication, how-
ever, we will assume that the literature has a
simplified agrammatical representation and the
corresponding generative model can be formal-
ized as a BN (GF,0%) as well.

The main question is the relation of P(G,0)
and P(G%,0%). In the most general approach
the hypothetical posteriors P(G,0|Dy,&;) ex-
pressing personal beliefs over the domain mod-
els conditional on the experiments and the per-
sonal background knowledge &; determine or
at least influence the parameters of the model
(GE,0L) in P(DL|(GE,601),¢).

The construction or the learning of a full-
fledged decision theoretic model of publication
is currently not feasible regarding the state of
quantitative modeling of scientific research and
publication policies, not to mention the cogni-
tive and even stylistic aspects of explanation,
understanding and learning (Rosenberg, 2000).
In a severely restricted approach we will fo-
cus only on the effect of the belief in domain
models P(G,#) on that in publication models
P(GF,6%). We will assume that this transfor-
mation is “local”, i.e. there is a simple proba-
bilistic link between the model spaces, specifi-
cally between the structure of the domain model
and the structure and parameters of the pub-
lication model p(GF,6%|G). Probabilistically
linked model spaces allow the computation of
the posterior over domain models given the lit-

erature(!) data as:

PGID) = i 3 PDRIGHP(GHG)
N7 qL

The formalization (Dy «— G — G* — DL))

also allows the computation of the posterior

over the domain models given both clinical and

the literature(!) data as:

P(D%|G) P(Dn|G)
P(D%,) P(Dn|D%)

o P(G)P(Dx|G) Y P(D/|G*)P(GHG),
GL

P(G|Dy, D) = P(G)

The order of the factors shows that the prior
is first updated by the literature data, then by
the clinical data. A considerable advantage of
this approach is the integration of literature and
clinical data at the lowest level and not through
feature posteriors, i.e. by using literature pos-
teriors in feature-based priors for the (clinical)
data analysis (Antal et al., 2004).

We will assume that a bijective relation exists
between the domain model structures G and the
publication model structures G* (7(G) = G*),
whereas the parameters # may encode addi-
tional aspects of publication policies and expla-
We will focus on the logical link be-
tween the structures, where the posterior given
the literature and possibly the clinical data is:

nation.

P(G|Dy, D%, €) (1)
x P(GI§)P(DN|G)P(D:|T(G)).

This shows the equal status of the literature
and the clinical data. In integrated learning
from heterogeneous sources however, the scal-
ing of the sources is advisable to express our
confidence in them.

3 Concepts, associations, causation

Frequently a biomedical domain can be charac-
terized by a dominant type of uncertainty w.r.t
the causal mechanisms. Such types of uncer-
tainty show certain sequentiality described be-
low, related to the development of biomedical
knowledge, though a strictly sequential view is
clearly an oversimplification.



(1) Conceptual phase: Uncertainty over the
domain ontology, i.e. the relevant entities.

(2) Associative phase: Uncertainty over the
association of entities, reported in the literature
as indirect, associative hypotheses, frequently
as clusters of entities. Though we accept the
general view of causal relations behind associa-
tions, we assume that the exact causal functions
and direct relations are unknown.

(3) Causal relevance phase: (Existential) un-
certainty over causal relations (i.e. over mech-
anisms). Typically, direct causal relations are
theoretized as processes and mechanisms.

(4) Causal effect phase: Uncertainty over the
strength of the autonomous mechanisms em-
bodying the causal relations.

In this paper we assume that the target do-
main is already in the Associative or Causal
phase, i.e. that the entities are more or less
agreed, but their causal relations are mostly
in the discovery phase. This holds in many
biomedical domains, particularly in those link-
ing biological and clinical levels. There the As-
sociative phase is a crucial but lengthy knowl-
edge accumulation process, where wide range of
research methods is used to report associated
pairs or clusters of the domain entities. These
methods admittedly produce causally oriented
associative relations which are partial, biased
and noisy.

4 Literature mining

Literature mining methods can be classified into
bottom-up (pairwise) and top-down (domain
model based) methods. Bottom-up methods at-
tempt to identify individual relationships and
the integration is left to the domain expert. Lin-
guistic approaches assume that the individual
relations are sufficiently known, formulated and
reported for automated detection methods. On
the contrary, top-down methods concentrate on
identifying consistent domain models by analyz-
ing jointly the domain literature. They assume
that mainly causally associated entities are re-
ported with or without tentative relations and
direct structural knowledge. Their linguistic
formulation is highly variable, not conforming

to simple grammatical characterization. Conse-
quently top-down methods typically use agram-
matical text representations and minimal lin-
guistic support. They autonomously prune the
redundant, inconsistent, indirect relations by
evaluating consistent domain models and can
deliver results in domains already in the Asso-
ciative phase.

Until recently mainly bottom-up methods
have been analyzed in the literature: linguistic
approaches extract explicitly stated relations,
possibly with qualitative ratings (Proux et al.,
2000; Hirschman et al., 2002); co-occurrence
analysis quantifies the pairwise relations of vari-
ables by their relative frequency (Stapley and
Benoit, 2000; Jenssen et al., 2001); kernel sim-
tlarity analysis uses the textual descriptions or
the occurrence patterns of variables in publi-
cations to quantify their relation (Shatkay et
al., 2002); Swanson and Smalheiser (1997) dis-
cover relationships through the heuristic pat-
tern analysis of citations and co-occurrences; in
(Cooper, 1997) and (Mani and Cooper, 2000)
local constraints were applied to cope with pos-
sible hidden confounders, to support the discov-
ery of causal relations; joint statistical analysis
in (Krauthammer et al., 2002) fits a generative
model to the temporal pattern of corrobora-
tions, refutations and citations of individual re-
lations to identify “true” statements. The top-
down method of the joint statistical analysis of
de Campos (1998) learns a restricted BN the-
saurus from the occurrence patterns of words in
the literature. Our approach is closest to this
and those of Krauthammer et al. and Mani.

The reconstruction of informative and faith-
ful priors over domain mechanisms or models
from research papers is further complicated by
the multiple aspects of uncertainty about the ex-
istence, scope (conditions of validity), strength,
causality (direction), robustness for perturba-
tion and relevance of mechanism and the in-
completeness of reported relations, because they
are assumed to be well-known parts of common
sense knowledge or of the paradigmatic already
reported knowledge of the community.



5 BN models of publications

Considering (biomedical) abstracts, we adopt
the central role of causal understanding and ex-
planation in scientific research and publication
(Thagard, 1998). Furthermore, we assume that
the contemporary (collective) uncertainty over
mechanisms is an important factor influenc-
ing the publications. According to this causal
stance, we accept the ‘causal relevance’ inter-
pretation, more specifically the ‘explained’ (ex-
planandum) and ‘explanatory’ (explanans), in
addition, we allow the ‘described’ status. Thisis
appealing, because in the assumed causal publi-
cations both the name occurrence and the pre-
processing kernel similarity method (see Sec-
tion 6) express the presence or relevance of the
concept corresponding to the respective vari-
able. This implicitly means that we assume
that publications contain either descriptions of
the domain concepts without considering their
relations or the occurrences of entities partici-
pating in known or latent causal relations. We
assume that there is only one causal mechanism
for each parental set, so we will equate a given
parental set and the mechanism based on it.

Furthermore, we assume that mainly positive
statements are reported and we treat negation
and refutation as noise, and that exclusive hy-
potheses are reported, i.e. we treat alternatives
as one aggregated hypothesis. Additionally, we
presume that the dominant type of publications
are causally (“forward”) oriented. We attempt
to model the transitive nature of causal expla-
nation over mechanisms, e.g. that causal mech-
anisms with a common cause or with a common
effect are surveyed in an article, or that subse-
quent causal mechanisms are tracked to demon-
strate a causal chain. On the other hand, we
also have to model the lack of transitivity, i.e.
the incompleteness of causal explanations, e.g.
that certain variables are assumed as explana-
tory, others as potentially explained, except for
survey articles that describe an overall domain
model. Finally, we assume that the reports of
the causal mechanisms and the univariate de-
scriptions are independent of each other.

5.1 The intransitive publication model

The first generative model is a two-layer BN.
The upper-layer variables represent the prag-
matic functions (described or explanandum) of
the corresponding concepts, while lower-layer
variables represent their observable occurrences
(described, explanatory or explained). Upper-
layer variables can be interpreted as the in-
tentions of the authors or as the property of
the given experimental technique. We assume
that lower-layer variables are influenced only by
the upper-layer ones denoting the correspond-
ing mechanisms, and not by any other external
quantities, e.g. by the number of the reported
entities in the paper. A further assumption is
that the belief in a compound mechanism is the
product of the beliefs in the pairwise dependen-
cies. Consequently we use noisy-OR canonic
distributions for the children in the lower layer.
In a noisy-OR local dependency (Pearl, 1988),
the edges can be labeled with a parameter, in-
hibiting the OR function, which can be inter-
preted also structurally as the probability of an
implicative edge.

This model extends the atomistic, individual-
mechanism oriented information extraction
methods by supporting the joint learning of all
the mechanisms, i.e. by the search for a domain-
wide coherent model. However it still cannot
model the dependencies between the reported
associations, and the presence of hidden vari-
ables considerably increase the computational
complexity of parameter and structure learning.

5.2 The transitive publication model

To devise a more advanced model, we relax the
assumption of the independence between the
variables in the upper layer representing the
pragmatic functions, and we adapt the mod-
els to the bag-of-word representation of publi-
cations (see Section 6). Consequently we an-
alyze the possible pragmatic functions corre-
sponding to the domain variables, which could
be represented by hidden variables. We assume
here that the explanatory roles of a variable are
not differentiated, and that if a variable is ex-
plained, then it can be explanatory for any other



variable. We assume also full observability of
causal relevance, i.e. that the lack of occur-
rence of an entity in a paper means causal ir-
relevance w.r.t. the mechanisms and variables
in the paper and not a neutral omission. These
assumptions allow the merging of the explana-
tory, explained and described status with the
observable reported status, i.e. we can repre-
sent them jointly with a single binary variable.
Note that these assumptions remain tenable in
case of report of experiments, where the pattern
of relevancies has a transitive-causal bias.

These would imply that we can model only
full survey papers, but the general, uncon-
strained multinomial dependency model used in
the transitive BNs provides enough freedom to
avoid this. A possible semantics of the parame-
ters of a binary, transitive literature BN can be
derived from a causal stance that the presence
of an entity X; is influenced only by the pres-
ence of its potential explanatory entities, i.e. its
parents. Consequently, P(X; = 1|Pax, = pay,)
can be interpreted as the belief that the present
parental variables can explain the entities Xj;
(Pax, denotes the parents of X; and Pax, —
X; denotes the parental substructure). In that
way the parameters of a complete network can
represent the priors for parental sets compatible
with the implied ordering:

P(X; = 1|Pax, = pax,) = P(Pax, = pax;,)
(2)
where for notational simplicity pa(X;) denotes
both the parental set and a corresponding bi-
nary representation.

The multinomial model allows entity specific
modifications at each node, combined into the
parameters of the conditional probability model
that are independent of other variables (i.e. un-
structured noise). This permits the modeling
of the description of the entities (P(XP)), the
beginning of the transitive scheme of causal
explanation (P(XP)) and the reverse effect
of interrupting the transitive scheme (P(X))).
These auxiliary variables model simplistic in-
terventions, i.e. authors’ intentions about pub-
lishing an observational model. Note that a
“backward” model corresponding to an effect-

to-cause or diagnostic interpretation and expla-
nation method has a different structure with op-
posite edge directions.

In the Bayesian framework, there is a struc-
tural uncertainty also, i.e. uncertainty over the
structure of the generative models (literature
BNs) themselves. So to compute the probabil-
ity of a parental set Pax, = pax, given a liter-
ature data set DJLV,, we have to average over the
structures using the posterior given the litera-
ture data:

P(Pax, = pax;|Dy) (3)

= > P(X;=1pax,, G)P(G|Df:)
(pax,—X;)CG

~ Y 1((pax, — X)) C G)P(GIDE) (1)
G

Consequently, the result of learning BNs from
the literature can be multiple, e.g. using a max-
imum a posteriori (MAP) structure and the cor-
responding parameters, or the posterior over the
structures (Eq. 3). In the first case, the param-
eters can be interpreted structurally and con-
verted into a prior for a subsequent learning. In
the latter case, we neglect the parametric infor-
mation focusing on the structural constraints,
and transform the posterior over the literature
network structures into a prior over the struc-
tures of the real-world BNs (see Eq. 1).

6 The literature data sets

For our research we used the same collection
of abstracts as that described in (Antal et al.,
2004), which was a preliminary work using pair-
wise methods. The collection contains 2256 ab-
stracts about ovarian cancer, mostly between
1980 and 2002. Also a name, a list of synonyms
and a text kernel is available for each domain
variable. The presence of the name (and syn-
onyms) of a variable in documents is denoted
with a binary value. Another binary represen-
tation of the publications is based on the kernel
documents:
K 1if0.1 < Sim(k]‘,di)
I _{ 0 else ' (5)

which expresses the relevance of kernel doc-
ument k; to document d; using the ‘term



frequency-inverse document frequency’ (TF-
IDF) vector representation and the cosine sim-
ilarity metric (Baeza-Yates and Ribeiro-Neto,
1999). We use the term literature data to denote
both binary representations of the relevance of
concepts in publications, usually denoted with
DX, (containing N’ publications).

7 Results

The structure learning of the transitive model is
achieved by an exhaustive evaluation of parental
sets up to 4 variables followed by the K2 greedy
heuristics using the BD,,, score (Heckerman et
al., 1995) and an ordering of the variables from
an expert, in order to be compatible with the
learning of the intransitive model. The struc-
ture learning of the two-layer model has a higher
computational cost, because the evaluation of a
structure requires the optimization of parame-
ters, which can be performed e.g. by gradient-
descent algorithms. Because of the use of the
“forward” explanation scheme, only those vari-
ables in the upper layer can be the parents
of an external variable that succeed it in the
causal order. Note that beside the optional
parental edges for the external variables, we al-
ways force a deterministic edge from the cor-
responding non-external variable. During the
parameter learning of a fixed network structure
the non-zero inhibitory parameters of the lower
layer variables are adjusted according to a gradi-
ent descent method to maximize the likelihood
of the data (see (Russell et al., 1995)). After
having found the best structure, according to its
semantics, it is converted into a flat, real-world
structure without hidden variables. This con-
version involves the merging of the correspond-
ing pairs of nodes of the two layers, and then
reverting the edges (since in the explanatory in-
terpretation effects precede causes).

We compared the trained models to the ex-
pert model using a quantitative score based on
the comparison of the pairwise relations in the
model, which are defined w.r.t. the causal inter-
pretation as follows (Cooper and Yoo, 1999; Wu
et al., 2001): Causal edge (E) An edge between
the nodes. Causal path (P) A directed path

linking nodes. (Pure) Confounded (C) The two
nodes have a common ancestor. The relation
is pure, if there is no edge or path between the
nodes. Independent (I) None of the previous
(i.e. there is no causal connection).

The difference between two model structures
can be represented in a matrix containing the
number of relations of a given type in the expert
model and in the trained model (the type of the
relation in the expert model is the row index
and the type in the trained model is the col-
umn index). These matrices (i.e. the compari-
son of the transitive and the intransitive mod-
els to the expert’s) are shown in Table 1. Scalar

Table 1: Causal comparison of the intransitive
and the transitive domain models (columns with
‘i” and ‘t’ in the subscript, respectively) to the
expert model (rows).

L, C P E| L C P E

{12 0 0 O 0 4 2 6

Cc 1106 20 2 4 4 90 26 12
P |76 72 80 18| 188 460 216 62
E| 7 6 8 3| 6 38 24 52

scores can be derived from this matrix, to evalu-
ate the goodness of the trained model, the stan-
dard choice is to sum the elements with differ-
ent weights (Cooper and Yoo, 1999; Wu et al.,
2001). One possibility e.g. if we take the sum of
the diagonal elements as a measure of similar-
ity. By this comparison, the intransitive model
achieves 148 points, while the transitive 358, so
the transitive reconstructs more faithfully the
underlying structure. Particularly important is
the (E, E') element according to which 52 of the
120 edges of the expert model remains in the
transitive model, on the contrary the intransi-
tive model preserves only 36 edges. Similarly
the independent relations of the expert model
are well respected by both models.

Another score, which penalizes only the incor-
rect identification of independence (i.e. those
and only those weights have a value of 1 which
belong to the elements (I, .) or (., I), the others
are 0), gives a score 210 and 932 for the tran-
sitive model and the intransitive respectively.



Figure 1: The expert-provided (dotted), the MAP transitive (dashed) and the intransitive (solid)
BNs compatible with the expert’s total ordering of the thirty-five variables using the literature data
set (PM]%OREL ), the K2 noninformative parameter priors, and noninformative structure priors.

This demonstrates that the intransitive model
is extremely conservative in comparison with
both the other learning method and with the
knowledge of the expert, it is only capable of
detecting the most important edges; note that
the proportion of its false positive predictions
regarding the edges is only 38% while in the
transitive model it is 61%.

Furthermore, we investigated the Bayesian
learning of BN features, particularly using the
temporal sequence of the literature data sets.
An important feature indicating relevance be-
tween two variables is the so-called ‘Markov
Blanket Membership’ (Friedman and Koller,
2000). We have examined the temporal charac-
teristics of the posterior of this relation between
a target variable ‘Pathology’ and the other ones
using the approximation in Eq. 4. This feature
is a good representative for the diagnostic im-
portance of variables according to the commu-
nity. We have found four types of variables: the
posterior of the relevance increasing in time fast
or slowly, decreasing slowly or fluctuating. Fig-
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Figure 2: The probability of the relation
Markov Blanket Membership between Pathol-
ogy and the variables with a slow rise.

ure 2 shows examples for variables with a slow
rising in time.

8 Conclusion

In the paper we proposed generative BN mod-
els of scientific publication to support the con-
struction of real-world models from free-text lit-
erature. The advantage of this approach is its



domain model based foundation, hence it is ca-
pable of constructing coherent models by au-
tonomously pruning redundant or inconsistent
relations. The preliminary results support this
expectation. In the future we plan to use the
evaluation methodology applied there including
rank based performance metrics and to investi-
gate the issue of negation and refutation partic-
ularly through time.
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