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Abstract

This paper proposes some possible modifications on the PC basic learning algorithm and
makes some experiments to study their behaviour. The variations are: to determine
minimum size cut sets between two nodes to study the deletion of a link, to make statistical
decisions taking into account a Bayesian score instead of a classical Chi-square test, to
study the refinement of the learned network by a greedy optimization of a Bayesian score,
and to solve link ambiguities taking into account a measure of their strength. It will be
shown that some of these modifications can improve PC performance, depending of the
objective of the learning task: discovering the causal structure or approximating the joint
probability distribution for the problem variables.

1 Introduction

There are two main approaches to learning
Bayesian networks from data. One is based on
scoring and searching (Cooper and Herskovits,
1992; Heckerman, 1995; Buntine, 1991). Its
main idea is to define a global measure (score)
which evaluates a given Bayesian network model
as a function of the data. The problem is solved
by searching in the space of possible Bayesian
network models trying to find the network with
optimal score. The other approach (constraint
learning) is based on carrying out several inde-
pendence tests on the database and building a
Bayesian network in agreement with tests re-
sults. The main example of this approach is PC
algorithm (Spirtes et al., 1993). It can be ap-
plied to any source providing information about
whether a given conditional independence rela-
tion is verified.

In the past years, searching and scoring pro-
cedures have received more attention, due to
some clear advantages (Heckerman et al., 1999).
One is that constraint based learning makes
categorical decisions from the very beginning.
These decisions are based on statistical tests
that may be erroneous and these errors will af-
fect all the future algorithm bahaviour. Another

one is that scoring and search procedures allow
to compare very different models by a score that
can be be interpreted as the probability of be-
ing the true model. As a consequence, we can
also follow a Bayesian approach considering sev-
eral alternative models, each one of them with
its corresponding probability, and using them
to determine posterior decisions (model averag-
ing). Finally, in score and searching approaches
different combinatorial optimization techniques
(de Campos et al., 2002; Blanco et al., 2003)
can be applied to maximize the evaluation of
the learned network. On the other hand, the PC
algorithm has some advantages. One of them is
that it has an intuitive basis and under some
ideal conditions it has guarantee of recovering a
graph equivalent to the one being a true model
for the data. It can be considered as an smart
selection and ordering of the questions that have
to be done in order to recover a causal structure.

The basic point of this paper is that PC al-
gorithm provides a set of strategies that can
be combined with other ideas to produce good
learning algorithms which can be adapted to dif-
ferent situations. An example of this is when
van Dijk et al. (2003) propose a combination of
order 0 and 1 tests of PC algorithm with an scor-
ing and searching procedure. Here, we propose



several variations about the original PC algo-
rithm. The first one will be a generalization of
the necessary path condition (Steck and Tresp,
1999); the second will be to change the statisti-
cal tests for independence by considering deci-
sions based on a Bayesian score; the third will be
to allow the possibility of refining the network
learned with PC by applying a greedy optimiza-
tion of a Bayesian score; and finally the last pro-
posal will be to delete edges from triangles in the
graph following an order given by a Bayesian
score (removing weaker edges first). We will
show the intuitive basis for all of them and we
will make some experiments showing their per-
formance when learning Alarm network (Bein-
lich et al., 1989). The quality of the learned
networks will be measured by the number or
missing-added links and the Kullback-Leibler
distance of the probability distribution associ-
ated to the learned network to the original one.

The paper is organized as follows: Section 2
is devoted to describe the fundamentals of PC
algorithm; Section 3 introduces the four varia-
tions of PC algorithm; in Section 4 the results
of the experiments are reported and discussed;
Section 5 is devoted to the conclusions.

2 The PC Algorithm

Assume that we have a set of variables X =
(X1, . . . , Xn) with a global probability distribu-
tion about them P . By an uppercase bold letter
A we will represent a subset of variables of X.
By I(A,B|C) we will denote that sets A and B

are conditionally independent given C.

PC algorithm assumes faithfulness. This
means that there is a directed acyclic graph, G,
such that the independence relationships among
the variables in X are exactly those represented
by G by means of the d-separation criterion
(Pearl, 1988). PC algorithm is based on the
existence of a procedure which is able of say-
ing when I(A,B|C) is verified in graph G. It
first tries to find the skeleton (underlying undi-
rected graph) and on a posterior step makes the
orientation of the edges. Our variations will be
mainly applied to the first part (determining the
skeleton). So we shall describe it with some de-

tail:

1. Start with a complete undirected graph G′

2. i = 0
3. Repeat

4. For each X ∈ X

5. For each Y ∈ ADJX

6.Test whether ∃S ⊆ ADJX − {Y }
with |S| = i and I(X,Y |S)

7. If this set exists
8. Make SXY = S

9. Remove X − Y link from G′

10. i = i + 1
11. Until |ADJX | ≤ i, ∀X

In this algorithm, ADJX is the set of nodes
adjacent to X in graph G′. The basis is that if
the set of independencies is faithful to a graph,
then there is not a link between X and Y , if
and only if there is a subset S of the adjacent
nodes of X such that I(X,Y |S). For each pair
of variables, SXY will contain such a set, if it
is found. This set will be used in the posterior
orientation stage.

The orientation step will proceed by looking
for sets of three variables {X,Y,Z} such that
edges X −Z, Y −Z are in the graph by not the
edge X − Y . Then, if Z 6∈ SXY , it orients the
edges from X to Z and from Y to Z creating a
v-structure: X → Z ← Y . Once, these orienta-
tions are done, then it tries to orient the rest of
the edges following two basic principles: not to
create cycles and not to create new v-structures.
It is possible that the orientation of some of the
edges has to be arbitrarily selected.

If the set of independencies is faithful to a
graph and we have a perfect way of determin-
ing whether I(X,Y |S), then the algorithm has
guarantee of producing a graph equivalent (rep-
resents the same set of independencies) to the
original one.

However, in practice none of these conditions
is verified. Independencies are decided at the
light of independence statistical tests based on
a set of data D. The usual way of doing these
tests is by means of a chi-square test based on
the cross entropy statistic measured in the sam-
ple (Spirtes et al., 1993). Statistical tests have



errors and then, even if faithfulness hypothesis
is verified, it is possible that we do not recover
the original graph. The number of errors of sta-
tistical tests increases when the sample is small
or the cardinality of the conditioning set S is
large (Spirtes et al., 1993, p. 116). In both
cases, due to the nature of frequentist statisti-
cal tests, there is a tendency to always decide
independence (Cohen, 1988). This is one rea-
son of doing statistical tests in increasing order
of the cardinality of the sets to which we are
conditioning.

Apart from no recovering the original graph,
we can have another effects, as the possibility
of finding cycles when orienting v-structures. In
our implementation, we have always avoided cy-
cles by reversing the arrows if necessary.

3 The Variations

3.1 Necessary Path Condition

In PC algorithm it is possible that we delete
the link between X and Y by testing the inde-
pendence I(X,Y |S), when S is a set containing
nodes that do not appear in a path (without
cycles) from X to Y . The inclusion of these
nodes is not theoretically wrong, but statisti-
cal tests make more errors when the size of
the conditioning set increases, then it can be
a source of problems in practice. For this rea-
son, Steck and Tresp (1999) proposed to reduce
ADJX − {Y } in Step 6, by removing all the
nodes that are not in a path from X to Y . In
this paper, we will go an step further by consid-
ering any subset CUTX,Y disconnecting X and
Y in the graph in which the link X − Y has
been deleted, playing the role of ADJX − {Y }.
Consider that in the skeleton, we want to see
whether link X − Y can be deleted, then we
first remove it, and if the situation is the one
in Figure 1, we could consider CUTX,Y = {Z}.
However, in the actual algorithm (even with the
necessary path condition) we consider the set
ADJX−{Y }, which is larger, and therefore with
an increased possibility of error.

Our proposal is to apply PC algorithm, but
by considering in step 6 a cut set of mini-
mum size in the graph without X − Y link, as

X Z Y

Figure 1: An small cut set

Acid and de Campos (2001) did in a different
context. The computation of this set will need
some extra time, but it can be done in polyno-
mial time with a modification of Ford-Fulkerson
algorithm (Acid and de Campos, 1996).

3.2 Bayesian Statistical Tests

PC algorithm performs a chi-square statistical
test to decide about independence. However,
as shown by Moral (2004), sometimes statis-
tical tests make too many errors. They try
to keep the Type I error (deciding dependence
when there is independence) constant to the
significance level. However, if the sample is
large enough this error can be much lower by
using a different decision procedure, without
an important increase in Type II error (decid-
ing independence when there is dependence).
Margaritis (2003) has proposed to make statis-
tical tests of independence for continuous vari-
ables by using a Bayesian score after discretizing
them. Previously, Cooper (1997) proposed a
different independence test based on a Bayesian
score, but only when conditioning to 0 or 1 vari-
able. Here we propose to do all the statistical
tests by using a Bayesian Dirichlet score1 (Heck-
erman, 1995) with a global sample size s equal
to 1.0. The test I(X,Y |S) is carried out by com-
paring the scores of X with S as parents and of
X with S ∪ {Y } as parents. If the former is
larger than the later, the variables are consid-
ered independent, and in the other case, they

1We have chosen this score instead of the original
K2 score (Cooper and Herskovits, 1992) because this is
considered more correct from a theoretical point of view
(Heckerman et al., 1995).



are considered dependent. The score of X with
a set of parents Pa(X) = Z is the logarithm of:

∏

z

(

Γ(s′)

Γ(Nz + s′)

∏

x

Γ(Nz,x + s′′)

Γ(s′′)

)

where Nz is the number of occurrences of
[Z = z] in the sample, Nz,x is the number of
occurrences of [Z = z, X = x] in the sample, s′

is s divided by the number of possible values of
Z, and s′′ is equal to s′ divided by the number
of values of X.

3.3 Refinement

If the statistical tests do not make errors and
the faithfulness hypothesis is verified, then PC
algorithm will recover a graph equivalent to the
original one, but this can never be assured with
finite samples. Also, even if we recover the origi-
nal graph, when our objective is to approximate
the joint distribution for all the variables, then
depending of the sample size, it can be more
convenient to use a simpler graph than the true
one. Imagine that the variables follow the graph
of Figure 2. This graph can be recovered by
PC algorithm by doing only statistical indepen-
dence tests of order 0 and 1 (conditioning to
none or 1 variable). However, when we are go-
ing to estimate the parameters of the network
we have to estimate a high number of probabil-
ity values. This can be a too complex model
(too many parameters) if the database is not
large enough. In this situation, it can be rea-
sonable to try to refine this network, taking into
account the actual orientation and the size of
the model. In this sense, the result of PC al-
gorithm can be used as an starting point for a
greedy search algorithm to optimize a concrete
metric.

In particular, our proposal is based on the
following steps:

1. Obtain an order compatible with the graph
learned by PC algorithm.

2. For each node, try to delete each one of
its parents or to add some of the non par-
ents preceding nodes as parent, measuring
the resulting Bayesian Dirichlet score. We

Figure 2: A too complex network.

X Y

Z

Figure 3: A simple network

make the movement with highest score dif-
ference while this is positive.

Refinement can also solve some of the prob-
lems associated with the non verification of
the faithfulness hypothesis. Assume for exam-
ple, that we have a problem with 3 variables,
X,Y,Z, and that the set of independencies is
given by the independencies of the graph in Fig-
ure 3 plus the independence I(Y,Z|∅). PC al-
gorithm will estimate a network, where the link
between Y and Z is lost. Even if the sample
is large we will estimate a too simple network
which is not an I-map (Pearl, 1988). If we ori-
ent the link X → Z in PC algorithm, refinement
can produce the network in Figure 3, by check-
ing that the Bayesian score is increased (as it
should be the case if I(Z, Y |X) is not verified).

The idea of refining a learned Bayesian net-
work by means of a greedy optimization of a
Bayesian score has been used in a different con-
text by Dash and Druzdzel (1999).

3.4 Triangles Resolution

Imagine that we have 3 variables, X,Y,Z,
and that no independence relationship involv-
ing them is verified: each pair of variables is de-
pendent and conditionally dependent giving the
third one. As there is a tendency to decide for
independence when the size of the conditioning



set is larger, then it is possible that all order 0
tests produce dependence, but when we test the
independence of two variables with respect to a
third one, we obtain independence. In this sit-
uation, the result of PC algorithm, will depend
of the order in which tests are carried out. For
example, if we ask first for the independence,
I(X,Y |Z), then the link X − Y is deleted, but
not the other two links, which will be oriented in
a posterior step without creating a v-structure.
If we test first I(X,Z|Y ), then the deleted link
will be X − Z, but not the other two.

It seems reasonable that if one of the links
is going to be removed, we should choose the
weakest one. In this paper, for each 3 vari-
ables that are a triangle (the graph contains
the 3 links) after order 0 tests, we measure the
strength of link X − Y as the Bayesian score
of X with Y,Z as parent, minus the Bayesian
score of X with Z as parents. For each trian-
gle we delete the link with lowest strength (if
this value is lower than 0). This is done as an
intermediate step, between order 0 and order 1
conditional independence tests.

In this paper, it has been implemented only in
the case in which independence tests are based
on a Bayesian score, but it could be also consid-
ered in the case of Chi-square tests by consid-
ering the strength of a link equal to the p-value
of the statistical independence test.

A deeper study of this type of interdepen-
dencies between the deletion of links (the pres-
ence of a link depends of the absence of other
one, and vice versa) has been carried out by
Steck and Tresp (1999), but the resolution of
these ambiguities is not done. Hugin system
(Madsen et al., 2003) allows to decide between
the different possibilities by asking to the user.
Our procedure could be extended to this more
general setting, but at this stage the implemen-
tation has been limited to triangles, as it is, at
the sample time, the most usual and simplest
situation.

4 Experiments

We have done some experiments with the Alarm
network (Beinlich et al., 1989) for testing the

PC variations. In all of them, we have started
with the original network and we have gener-
ated samples of different sizes by logic sampling.
Then, we have tried to recover the original net-
work from the samples by using the different
variations of the PC algorithm including the ori-
entation step. We have considered the follow-
ing measures of error in this process: number of
missing links, number of added links, and the
Kullback-Leibler distance (Kullback, 1968) of
the learned probability distribution to the orig-
inal one2. Kullback-Leibler distance is a more
appropriate measure of error when the objective
is to approximate the joint probability distribu-
tion for all the variables and the measures of
number of differences in links is more appropri-
ate when our objective is to recover the causal
structure of the problem. We do not consider
the number of wrong orientations as our vari-
ations are mainly focused in the skeleton dis-
covery phase of PC algorithm. The number of
added or deleted links only depend of the first
part of the learning algorithm (selection of the
skeleton).

Experiments have been carried out in Elvira
environment (Consortium, 2002), where a local
computation of Kullback-Leibler distance is im-
plemented. The different sample sizes we have
used are: 100, 500, 1000, 5000, 10000, and for
each sample size, we have repeated the exper-
iment 100 times. The combinations of algo-
rithms we have tested are the following:

Alg1 This is the algorithm with minimal separat-
ing sets, score based tests, no refinement,
and triangle resolution.

Alg2 Algorithm with minimal separating sets,
score based tests, refinement, and triangle
resolution.

Alg3 Algorithm with adjacent nodes as separat-
ing sets, score based tests, no refinement,
and triangle resolution.

Alg4 Algorithm with minimal separating sets,
Chi-square tests, no refinement and no res-
olution of triangles.

2The parameters are estimated with a Bayesian
Dirichlet approach with a global sample size of 2.



100 500 1000 5000 10000

Alg1 17.94 8.76 6.02 3.25 2.56
Alg2 16.29 8.16 5.59 3.7 3.28
Alg3 26.54 18.47 14.87 8.18 7.08
Alg4 29.07 11.49 8.42 3.53 2.14
Alg5 17.87 8.83 6.08 3.03 2.57

Table 1: Average number of missing links

100 500 1000 5000 10000

Alg1 10.42 4.96 2.87 2.2 1.98
Alg2 26.13 17.52 16.32 16.01 15.38
Alg3 3.06 0.63 0.14 0.03 0.01
Alg4 14.73 5.96 5.68 4.78 4.79
Alg5 10.46 4.99 3.21 1.92 1.9

Table 2: Average number of added links

Alg5 This is the algorithm with minimal separat-
ing sets, score based tests, no refinement,
and no resolution of triangles.

These combinations are designed in this way,
as we consider Alg1 our basic algorithm to re-
cover the graph structure, and then we want to
study the effect of the application of each one
of the variations to it.

Table 1 contains the average number of miss-
ing links, Table 2 the average number of added
links, Table 3 the average Kulback-Leibler dis-
tance, and finally Table 4 contains the average
running times of the different algorithms. In
these results we highlight the following facts:

Refinement (Alg2) increases the number of er-
rors in the recovering of the causal structure
(mainly more added links), but decreases the
Kullback-Leibler distance to the original distri-
bution. So, its application will depend of our
objective: approximate the joint distribution or
recover the causal structure. Refinement is fast

100 500 1000 5000 10000

Alg1 4.15 2.46 1.81 0.98 0.99
Alg2 2.91 0.96 0.56 0.19 0.11
Alg3 4.98 3.27 2.58 1.11 0.77
Alg4 5.96 2.19 1.49 1.05 0.91
Alg5 4.15 2.36 1.86 1.11 0.98

Table 3: Average Kullback-Leibler distance

100 500 1000 5000 10000

Alg1 2.16 4.1 5.88 21.98 42
Alg2 2.25 4.12 5.89 21.98 42.1
Alg3 0.33 1.56 3.34 20.73 44.14
Alg4 2.45 8.9 13.89 39.42 68.85
Alg5 2.21 4.15 6.02 22.95 44.4

Table 4: Average time

and it does not add a significant amount of extra
time.

When comparing Alg1 with Alg3 (minimum
size cut set vs set of adjacent nodes) we ob-
serve that with adjacent nodes fewer links are
added and more ones are missing. The total
amount of errors is in favour of Alg1 (minimum
size cut set). This is due to the fact that Alg3
makes more conditional independence tests and
with larger conditioning sets of variables, which
makes more possible to delete links. Kullback-
Leibler distance is better for Alg1 except for the
largest sample size. A possible explanation, is
that with this large sample size, we really do
not miss any important link of the network, and
added links can be more dangerous than deleted
ones (when we delete links we are averaging dis-
tributions). With smaller sample sizes, Alg3
had a worse Kullback-Leibler as it can be miss-
ing some important links. We do not have any
possible explanation to the fact that Alg1 does
not improve Kullback-Leibler distance when in-
creasing the sample size from 5000 to 10000.
When comparing the time of both algorithms,
we see that Alg1 needs more time (to compute
minimum size cut sets) however, when the sam-
ple size is large this extra time is compensated
by the lower number of statistical tests, being
the total time for size 10000 lower in the case of
Alg1 (with minimum size cut sets).

When comparing Alg1 and Alg4 (Score test
and triangle resolution vs Chi-square tests and
no triangle resolution) we observe than Alg4 al-
ways add more links and miss more links (except
for the largest sample size). The total number
of errors is lower for Alg1. It is meaningful the
fact that the number of added links do not de-
crease when going from a sample of 5000 to a



sample of 10000. This is due to the fact that
the probability of considering dependence when
there is independence is fixed (the significance
level) for large the sample sizes. So all the ex-
tra information of the larger sample is devoted
to decrease the number of missing links (2.14 in
Alg4 against 2.56 in Alg1), but the difference in
added links is 4.79 in Alg4 against 1.98 in Alg1.
So the small decreasing in missing links is at the
cost of a more important error in the number of
added links. Bayesian scores tests are more bal-
anced in the two types of errors. When consid-
ering the Kullback-Leibler distance, we observe
again the same situation than when comparing
Alg1 and Alg2: a greater number of errors in
the structure does not always imply a greater
Kullback-Leibler distance. The time is always
greater for Alg4.

The differences between Alg1 and Alg4 are
not due to the triangles resolution in Alg1. As
we will see now, triangles resolution do not re-
ally implies important changes in Alg1 perfor-
mance. In fact, the effect of Chi-square tests
against Bayesian tests without any other addi-
tional factor, can be seen by comparing Alg5
and Alg4. In this case, we can observe the same
differences as when comparing Alg1 and Alg5.

When comparing Alg1 and Alg5 (no resolu-
tion of triangles) we see that there is not im-
portant differences in performance (errors and
time) when resolution of triangles is applied.
It seems that the total number of errors is de-
creased for intermediate sample sizes (500-1000)
and there are not important differences for the
other sample sizes, but more experiments are
necessary. Triangles resolution do not really
add a meaningful extra time. Applying this step
needs some time, but the graph is simplified and
posterior steps can be faster.

5 Conclusions

In this paper we have proposed four variations
of the PC algorithm and we have tested them
when learning the Alarm network. Our final
recommendation would be to use the PC algo-
rithm with score based tests, minimum size cut
sets, and triangle resolution. The application of

refinement step would depend of the final aim:
if we want to learn the causal structure, then re-
finement should not be applied, but if we want
to approximate the joint probability distribu-
tion, then refinement should be applied. We
recognize that more extensive experiments are
necessary to evaluate the application of these
modifications, specially the triangle resolution.
But we feel that this modification is intuitively
supported, and that it could have a more im-
portant role in other situations, specially if the
faithfulness hypothesis is not verified.

Other combinations could be appropriated if
the objective is different, for example if we want
to minimize the number of added links, then
Alg3 (with adjacent nodes as cut set) could be
considered.

In the future we plan to make more extensive
experiments testing different networks and dif-
ferent combinations of these modifications. At
the same time, we will consider another possible
variations, as for example an algorithm mixing
the skeleton and orientation steps. It is possible
that some of the independencies are tested con-
ditional to some sets, that after the orientation
do not separate the two links. We also plan to
study alternative scores and to study the efect
of using different sample sizes. Also partial ori-
entations can help to make the separating sets
even smaller as there can be some paths which
are not active without observations. This can
make algorithms faster and more accurate. Fi-
nally, we think that the use of PC and its vari-
ations as starting points for greedy searching
algorithms needs further research effort.
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