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Abstract

Selecting a single model for clustering ignores the uncertainty left by finite data as to
which is the correct model to describe the dataset. In fact, the fewer samples the dataset
has, the higher the uncertainty is in model selection. In these cases, a Bayesian approach
may be beneficial, but unfortunately this approach is usually computationally intractable
and only approximations are feasible. For supervised classification problems, it has been
demonstrated that model averaging calculations, under some restrictions, are feasible and
efficient. In this paper, we extend the expectation model averaging (EMA) algorithm
originally proposed in Santafé et al. (2006) to deal with model averaging of naive Bayes
models for clustering. Thus, the extended algorithm, EMA-TAN, allows to perform an
efficient approximation for a model averaging over the class of tree augmented naive Bayes
(TAN) models for clustering. We also present some empirical results that show how the

EMA algorithm based on TAN outperforms other clustering methods.

1 Introduction

Unsupervised classification or clustering is the
process of grouping similar objects or data sam-
ples together into natural groups called clus-
ters. This process generates a partition of
the objects to be classified. Bayesian networks
(Jensen, 2001) are powerful probabilistic graph-
ical models that can be used for clustering
purposes. The naive Bayes is the most sim-
ple Bayesian network model (Duda and Hart,
1973). It assumes that the predictive vari-
ables in the model are independent given the
value of the cluster variable. Despite this be-
ing a very simple model, it has been success-
fully used in clustering problems (Cheeseman
and Stutz, 1996). Other models have been pro-
posed in the literature in order to relax the
heavy independence assumptions that the naive
Bayes model makes. For example, tree aug-
mented naive Bayes (TAN) models (Friedman
et al., 1997) allow the predictive variables to
form a tree and the class variable remains as
a parent of each predictive variable. On the
other hand, more complicated methods have
been proposed to allow the encoding of context-
specific (in)dependencies in clustering problems
by using, for instance, naive Bayes (Barash and

Friedman, 2002) or recursive Bayesian multinets
(Pefia et al., 2002) which are trees that incor-
porate Bayesian multinets in the leaves.

The process of selecting a single model for
clustering ignores model uncertainty and it can
lead to the selection of a model that does not
properly describe the data. In fact, the fewer
samples the dataset has, the higher the uncer-
tainty is in model selection. In these cases,
a Bayesian approach may be beneficial. The
Bayesian approach proposes an averaging over
all models weighted by their posterior probabil-
ity given the data (Madigan and Raftery, 1994;
Hoeting et al., 1999). The Bayesian model av-
eraging has been seen by some authors as a
model combination technique (Domingos, 2000;
Clarke, 2003) and it does not always perform
as successfully as expected. However, other au-
thors states that Bayesian model averaging is
not exactly a model ensemble technique but a
method for ‘soft model selection’ (Minka, 2002).

Although model averaging approach is nor-
mally preferred when there are a few data sam-
ples because it deals with uncertainty in model
selection, this approach is usually intractable
and only approximations are feasible. Typi-
cally, the Bayesian model averaging for cluster-
ing is approximated by averaging over some of



the models with the highest posterior probabili-
ties (Friedman, 1998). However, efficient calcu-
lation of model averaging for supervised classifi-
cation models under some constraints has been
proposed in the literature (Dash and Cooper,
2004; Cerquides and Lépez de Mantaras, 2005).
Some of these proposals have also been extended
to clustering problems. For example, Santafé
et al. (2006) extend the calculations of naive
Bayes models to approximate a Bayesian model
averaging for clustering. In that paper, the
authors introduce the expectation model aver-
aging (EMA) algorithm, which is a variant of
the well-known EM algorithm (Dempster et al.,
1977) and allows to deal with the latent clus-
ter variable and then approximate a Bayesian
model averaging of naive Bayes models for clus-
tering.

In this paper we use the structural features
estimation proposed by Friedman and Koller
(2003) and the model averaging calculations
for supervised classifiers presented in Dash and
Cooper (2004) in order to extend the EMA algo-
rithm to TAN models (EMA-TAN algorithm).
In other words, we propose a method to obtain
a single Bayesian network model for clustering
which approximates a Bayesian model averaging
over all possible TAN models. This is possible
by setting an ancestral order among the predic-
tive variables. The result of the Bayesian model
averaging over TAN models is a single Bayesian
network model for clustering (Dash and Cooper,
2004).

The rest of the paper is organized as follows.
Section 2 introduces the notation that is used
throughout the paper as well as the assumptions
that we make. Section 3 describes the EMA
algorithm to approximate model averaging over
the class of TAN models. Section 4 shows some
experimental results with synthetic data that
illustrate the behavior of the EMA algorithm.
Finally, section 5 presents the conclusions of the
paper and future work.

2 Notation and Assumptions

In an unsupervised learning problem there is a
set of predictive variables, Xi,...,X,,, and the
latent cluster variable, C'. The dataset D =
{xM ... 2™} contains data samples () =

{xgl),...,xg)}, withl =1,...,N.

We define a Bayesian network model as B =
(5,0), where S describes the structure of the
model and 0 its parameter set. Using the clas-
sical notation in Bayesian networks, 6;;; (with
k=1,...,r; and r; being the number of states
for variable X;) represents the conditional prob-
ability of variable X; taking its k-th value given
that its parents, Pa,;, takes its j-th configura-
tion. The conditional probability mass function
for X; given the j-th configuration of its par-
ents is designated as 6;;, with j = 1,...,¢,
where ¢; is the number of different states of Pa,.
Finally, 8; = (0;1,...,0,,) denotes the set of
parameters for variable X;, and therefore, 8 =
(6¢,01,...,60,), where Oc = (Oc—1,...,00—r,)
is the set of parameters for the cluster variable,
with 7o the number of clusters fixed in advance.

In order to use the decomposition proposed
in Friedman and Koller (2003) for an efficient
model averaging calculation, we need to con-
sider an ancestral order 7 over the predictive
variables.

Definition 1. Class of TAN models (LT, ):
given an ancestral order 7, a model B belongs
to LT, if each predictive variable has up to
two parents (another predictive variable and the
cluster variable) and the arcs between variables
that are defined in the structure S are directed
down levels: X; — X; € S = levelg(X;) <
levelr (X;).

Note that, the classical conception of TAN
model allows the predictive variables to form a
tree and then, the cluster variable is set as a
parent of each predictive variable. However, we
do not restrict £7,, to only these tree mod-
els, but we also allow the predictive variables to
form a forest and also the class variable may or
may not be set as a parent of each predictive
variable. Therefore LT, also includes, among
others, naive Bayes and selective naive Bayes
models.

For a given ordering 7 and a particular vari-
able X;, we can enumerate all the possible
parent sets for X; in the class of TAN mod-
els LT, . In order to clarify calculations, we
superscript with v any quantity related to a
predictive variable X; and thus, we are able
to identify the parent set of variable X; that



we are taking into consideration. For exam-
ple, for a given order w = (X3, X9, X3) the
possible sets of parents for X3 in LT, are:
Pa‘é = {(Z)},Pa% = {Xl}vpa‘g = {X2}7Pa‘§ =
{CaXl}vpa‘g = {C,XQ},P(lg = {C} with, in
this case, v = 1,...,6. In general, we consider,
without loss of generality, m = (Xi,...,X,)
and therefore, for a variable X;, v = 1,...,2i.
Moreover, we use ¢ to index any quantity related
to the ¢-th predictive variable, withz =1,...,n.

Additionally, the following five assumptions
are needed to perform an efficient approxima-
tion of model averaging over LT, y:

Multinomial variables: Each variable X is
discrete and can take r; states. The cluster vari-
able is also discrete and can take ro possible
states, r¢ being the number of clusters fixed in
advance.

Complete dataset: We assume that there are
no missing values for the predictive variables in
the dataset. However, the cluster variable is
latent; therefore, its values are always missing.

Dirichlet priors: The parameters of every
model are assumed to follow a Dirichlet distri-
bution. Thus, ;i is the Dirichlet hyperparam-
eter for parameter 0;;; from the network, and
ac—j is the hyperparameter for 6c_;. In fact, as
we have to take into consideration each possible
model in £7,, the parameters of the models
can be denoted as GZ’Jk Hence, we assume the
existence of hyperparameters afjk.
Parameter independence: The probability
of having the set of parameters @ for a given
structure S can be factorized as follows:

p(015) = p(0c) [T [[ 2641S) ()

i=1j=1

Structure modularity: The prior probability
p(S) can be decomposed in terms of each
variable and its parents:

p()  ps(C) [[ ps(X:, Pay) @)
=1

where pg(X;, Pa;) is the information con-
tributed by variable X; to p(S), and pg(C) is
the information contributed by the cluster vari-
able.

Parameter independence assumes that the
prior on parameters 0;;; for a variable X; de-
pends only on local structures. This is known as
parameter modularity (Heckerman et al., 1995).
Therefore, we can state that for any two net-
work structures S7 and S, if X; has the same
parent set in both structures then p(6;;x|S1) =
p(0ijk|S2). As a consequence, parameter cal-
culations for a variable X; will be the same in
every model whose structure defines that the
variable X; has the same parent set.

3 The EMA-TAN Algorithm

The EMA algorithm was originally introduced
in Santafé et al. (2006) for dealing with model
averaging calculations of naive Bayes models.
In this section we present the extension of this
algorithm (EMA-TAN) in order to average over
TAN models.

Theorem 1 (Dash and Cooper, 2004). There
exist, for supervised classification problems, a
single model B = (S,0) which defines a joint
probability distribution p(c,az!l’g’) equivalent to
the joint probability distribution produced by
model averaging over all TAN models.  This
model B is a complete Bayesian network where
the structure S defines the relationship between
variables in such a way that, for a variable X;,
the parent set of X; in the model B is Pa; =
UL, Paj.

This result can be extended to clustering
problems by means of the EMA-TAN algorithm.
However, the latent cluster variable prevents the
exact calculation of the model averaging and
therefore the model B obtained by the EMA-
TAN algorithm is not an exact model averag-
ing over LT, but an approximation. There-
fore, the EMA-TAN algorithm provides a pow-
erful tool that allows to learn a single unsuper-
vised Bayesian network model which approxi-
mates Bayesian model averaging over LT, .

The unsupervised classifier is obtained by
learning the predictive probability, p(c,x|D),
averaged over the mazimum a posteriori (MAP)
parameter configurations for all the models in
LT, n. Then, we can obtain the unsupervised
classifier by using the conditional probability of
the cluster variable given by Bayes’ rule.

The EMA-TAN algorithm is an adaption of



the well-known EM algorithm. It uses the E
step of the EM algorithm to deal with the miss-
ing values for the cluster variable. Then, it per-
forms a model averaging step (MA) to obtain
p(e,x|D) and thus the unsupervised Bayesian
network model for clustering.

The EMA-TAN, as well as the EM algorithm,
is an iterative process where the two steps of
the algorithm are repeated successively until a
stopping criterion is met. At the t-th iteration

of the algorithm, a set of parameters, é(t), for
the Bayesian network model B®) is calculated.
Note that, although we differentiate between
the Bayesian network models among the itera-
tions of the EMA-TAN algorithm, the structure
of the model, S, is constant and only the es-
timated parameter set changes. The algorithm
stops when the difference between the sets of pa-
rameters learned in two consecutive iterations,

8" and 8" is less than threshold e, which
is fixed in advance.

In order to use the EMA-TAN algorithm,
we need to set an initial parameter configu-

7(0)

ration, @

for é(o) are usually taken at random and e is
set at a small value. Note that, even though
the obtained model is a single unsupervised
Bayesian network, its parameters are learned
taking into account the MAP parameter con-
figuration for every model in LT,,. Thus,
the resulting unsupervised Bayesian network
will incorporate into its parameters information
about the (in)dependencies between variables
described by the different TAN models.

, and the value of e. The values

3.1 E Step (Expectation)

Intuitively, we can see this step as a comple-
tion of the values for the cluster variable, which
are missing. Actually, this step computes the
expected sufficient statistics in the dataset for
variable X; in every model in LT, given the
current model, B®). These expected sufficient
statistics are used in the next step of the al-
gorithm, MA, as if they were actual sufficient
statistics from a complete dataset. From now
on, D@ denotes the dataset after the E step at
the t-th iteration of the algorithm.

Note that, due to parameter modularity, we
do not actually need to calculate the expected

sufficient statistics for all the models in LT,
because some of these models share the same
value for the expected sufficient statistics.
Hence, it is only necessary to calculate the
expected sufficient statistics with different
parent sets. They can be obtained as follows:

(N8 Zp ,Pa} = jla,BY) (3)
where xf represents the k-th value of the i-

th variable. The expected sufficient statistic
E(ijk|l3(t)) denotes, at iteration t, the ex-
pected number of cases in the dataset D where
variable X; takes its k-th value, and the v-th
parent set of X; takes its j-th configuration.

Similarly, we can obtain the expected suf-
ficient statistics for the cluster variable. This
is a special case since for any model in LT,
the parent set for C is the same (the cluster
variable does not have any parent). Therefore,
we refuse the use of superindex v in those
quantities related only to C.

N
=3 "nC
=1

Note that, some of the expected sufficient
statistics E(N;’jk]l’g’(t)) do not depend on the
value of C'. Therefore, these values are constant
throughout the iterations of the algorithm and
it is necessary to calculate them only once.

E(Nc—|B" =jle®,8Y) (1)

3.2 MA Step (Model Averaging)

In this second step, the EMA algorithm per-
forms the model averaging calculations which
obtain a single Bayesian network model with

parameters é(tH). These parameters are ob-
tained by calculating p(c, z|D®) as an average
over the MAP configurations for the models in
LT

In order to make the calculations clearer, we
first show how we can obtain p(c, z|S, D) for
a fixed structure S:

ple.alS. DY) = [ ple.a]S,0)p(615,D")d6 (5)

The exact computation of the integral in
Equation 5 is intractable for clustering prob-
lems, therefore, an approximation is needed



(Heckerman et al., 1995). However, assuming
parameter independence and Dirichlet priors,
and given that the expected sufficient statis-
tics calculated in the previous E step can
be used as an approximation to the actual
sufficient statistics in the complete dataset, we
can approximate p(c,az|S,D(t)) by the MAP
parameter configuration. This is the parameter
configuration that maximizes p(6|S, D®) and
can be described in terms of the expected
sufficient statistics and the Dirichlet hyper-
parameters (Heckerman et al., 1995; Cooper
and Herskovits, 1992). Therefore, Equation 5
results:

ac—j; + E(Nc_j|l§(t)) .

, S,D(t) ~ <

(6)

H zyk + E(Njk|B
i ol + E(NEBW)

= QC —Jj ng]k

where é“ ik is the MAP parameter configu-
ration for Gl]k (1; denotes the parent index
that corresponds to the parent set for X; de-
scribed in S), off = YL b, E(Ny;|BW) =

v E(Nij|B® ) and similarly for the values

related to C.

Considering that the structure is not fixed
a priori, we should average over all selective
model structures in £7, \; in the following way:

ple.D) = ™
> [ ple.wls,00p(615.D")do p(s|DY)
S

Therefore, the model averaging calculations
require a summation over 2"n! terms, which are
the models in L7, .

Using the previous calculations for a fixed
structure, Equation 8 can be written as:

p(c, x| DY S 0[] 0%, p(SIDY)
S =1

Y 0o []04, p(DY
S i=1

Given the assumption of Dirichlet priors and
parameter independence, we can approximate

S) p(S)  (8)

p(DW|S) efficiently.

p(c,z|DY

In order to do so, we
adapt the formula to calculate the marginal
likelihood with complete data (Cooper and
Herskovits, 1992) to our problem with missing

values. Thus, we have an approximation to
p(DD|S):
e ~
OIS (ao) P(ac—j + E(Nc—;18Y))
o +E<Nc|zs<f>>>H Tac—)

j=1

ﬁH Hr(a‘ i BN B®))
Tl + E(N'“\Bm

)
i=1 j=1 k=1 ”k

At this point, given structure modular-
ity assumption, we are able to approximate
) with the following expression:

p(c,z| D

n

mwy oo [T ot (9)
s i=1

where s is a constant and pc_; and pf;k are

defined in Equation 10.

['(ac) ‘
I'(ac + E(Nc|B®))

po—j =b0c—; ps(C)

ﬁ I(ac—; + E(Ne—;|BY))

T(ac-j)

(10)

D(ad)

2]

— i X;, Pati : : :
Pisn = Vg ps(Xs, Pay )_Hl T(aly + BN BO))
-

"Dl + E(NYBY)

H I(at)

k=1 ijk

Since we are assuming parameter indepen-
dence, structure modularity and parameter
modularity, we can apply the dynamic pro-
gramming solution described in Friedman and
Koller (2003), and Dash and Cooper (2004).
Thus Equation 9 can be written as follows:

n 2
ple,z DDy~ X pey [T phr (A1)

i=1v=1

with A being a constant.

Note that the time complexity needed to cal-
culate the averaging over LT, is the same as
that which is needed to learn the MAP param-
eter configuration for B.



We can see the similarity of the above-
described Equation 11 with the factorization
of a Bayesian network model. Indeed the joint
probability distribution of the approximated
Bayesian model averaging over L7, for
clustering is equivalent to a single Bayesian
network model. Therefore, the parameters
of the model for the next iteration of the
algorithm can be calculated as follows:

21

A(t+1 A(t+1

00 ocpoy o O o> oy (12)
v=1

3.3 Multi-start EMA-TAN

The EMA-TAN is a greedy algorithm that is
susceptible to be trapped in a local optima. The
results obtained by the algorithm depend on the
random initialization of the parameters. There-
fore, we propose the use of a multi-start scheme
where m different runs of the algorithm with dif-
ferent random initializations are performed. In
Santaf et al. (2006) different criteria to obtain
the final model from the multi-start process are
proposed. In our case, we use the same criteria
that the multi-start EM uses: the best model in
terms of likelihood among all the m calculated
models is selected as the final model. This is
not a pure Bayesian approach to the model av-
eraging process but, in practice, it works as well
as other more complicated techniques.

4 Evaluation in Clustering Problems

It is not easy to validate clustering algorithms
since clustering problems do not normally
provide information about the true grouping of
data samples. In general, it is quite common
to use synthetic data because the true model
that generated the dataset as well as the
underlying clustering structure of the data
are known. In order to illustrate the behavior
of the EMA-TAN algorithm, we compare it
with the classical EM algorithm and with the
EMA algorithm (Santafé et al., 2006). For
EMA-TAN evaluation, we obtain random TAN
models where the number of predictive vari-
ables vary in {2, 4,8, 10,12, 14}, each predictive
variable can take up to three states and the
number of clusters is set to two. For each TAN
configuration we generate 100 random models
and each one of these models is sampled to

obtain different datasets of sizes 40, 80, 160, 320
and 640. In the experiments, we compare the
multi-start EMA-TAN (called also EMA-TAN
for convenience) with three different algorithms:

EM-TAN: a multi-start EM that learns a TAN
model by using, at each step of the EM algo-
rithm, the classical method proposed by Fried-
man et al. (1997) adapted to be used within the
EM algorithm.

EM-BNET: a multi-start EM algorithm used
to learn the MAP parameters of a complete
Bayesian network for a given order 7r.

EMA: the multi-start model averaging of naive
Bayes for clustering.

Note that, for a given order w, both EMA-
TAN and EM-BNET models share the same
network structure but their parameter sets are
calculated in a different way. The number of
multi-start iterations for both multi-start EM
and multi-start EMA is m = 100.

Since the datasets are synthetically gener-
ated, we are able to know the real ordering
among variables. Nevertheless, we prefer to use
a more general approach and assume that this
order is unknown. Therefore, we use a random
ordering among predictive variables for each
EMA-TAN model that we learn. As the EM-
BNET algorithm also needs an ancestral order
among predictive variables, in the experiments,
we use the same random ordering for any pair
of models (EMA-TAN vs. EM-BNET) that we
compare.

Every model is used to cluster the dataset
from which it has been learned. In the exper-
iments, we compare EMA-TAN vs. EM-TAN,
EMA-TAN vs. EM-BNET and EMA-TAN vs.
EMA. For each test, the winner model is ob-
tained by comparing the data partitions ob-
tained by both models with the true partition of
the dataset. Thus, the model with the best es-
timated accuracy (percentage of correctly clas-
sified instances) is the winner model. In Table
1, the results from the experiments with ran-
dom TAN models are shown. For each model
configuration, the table describes the number
of wins/draws/losses of the EMA-TAN models
with respect to EM-TAN, EM-BNET or EMA
models on basis of the estimated accuracy of
each model. We also provide information about



a Wilcoxon signed-rank test! used to evaluate
whether the accuracy estimated by two differ-
ent models is different at the 1% and 10% levels.
We write the results shown in Table 1 in bold if
the test is surpassed at the 10% level and inside
a gray color box if the test is surpassed at the 1%
level. It can be seen that, in general, the EMA-
TAN models behave better than the others and
the differences between estimated accuracy are,
in most of the cases, statistically significant.

We can see that the compared models obtain
very similar results when they have a few predic-
tive variables. This is because the set of models
that we are averaging over to obtain the EMA-
TAN model is very small. Therefore, it is quite
possible that other algorithms such as EM-TAN
select the correct model. Hence, in some exper-
iments with the simplest models (models with 2
predictive variables), EMA-TAN algorithm sig-
nificantly lost with the other algorithms. How-
ever, when the number of predictive variables
in the model increases and the dataset size is
relatively big (the smallest datasets are not big
enough for a reliable estimation of the param-
eters) the EMA-TAN considerably outperforms
any other model in the test.

The experimental results from this section re-
inforce the idea that the results of the Bayesian
model averaging outperform other methods
when the model that generated the data is in-
cluded in the set of models that we are aver-
aging over. Since we are averaging over a re-
stricted class of models, this situation may not
be fulfilled when applying the EMA-TAN to real
problems. Due to the lack of space, we do not
include in the paper more experimentation in
progress, but we are aware that it would be
very interesting to check the performance of the
EMA algorithm with other synthetic datasets
generated by sampling naive Bayes and general
Bayesian network models and also with dataset
from real problems.

5 Conclusions

We have shown that it is possible to obtain a sin-
gle unsupervised Bayesian network that approx-

!Since we have checked by means of a Kolmogorov-
Smirnov test that not all the outcomes from the experi-
ment can be considered to follow a normal distribution,
we decided to use a Wilcoxon sign-rank test to compare
the results

imates model averaging over the class of TAN
models. Furthermore, this approximation can
be performed efficiently. This is possible by us-
ing the EMA-TAN algorithm. The EMA is an
algorithm originally proposed in Santafé et al.
(2006) for averaging over naive Bayes models in
clustering problems. In this paper we extend
the algorithm to deal with more complicated
models such as TAN (EMA-TAN algorithm).
We also present an empirical evaluation by com-
paring the model averaging over TAN models
with the model averaging over naive Bayes mod-
els and with the EM algorithm to learn a sin-
gle TAN model and a Bayesian network model.
These experiments conclude that, at least, when
the model that generated the dataset is included
in the set of models that we average over, the av-
eraging over TAN models outperforms the other
methods

Probably, one of the limitations of the pro-
posed algorithm is that, because the learned
model which approximates model averaging is a
complete Bayesian network, it is computation-
ally hard to learn the model for problems with
many predictive variables. In order to overcome
this situation, we can restrict the final model
to a maximum of k possible parents for each
predictive variable. Future work might include
a more exhaustive empirical evaluation of the
EMA-TAN algorithm and the application of the
algorithm to real problems. Moreover, the algo-
rithm can be extended to other Bayesian clas-
sifiers such as k-dependent naive Bayes (kDB),
selective naive Bayes, etc. Another interesting
future work may be the relaxation of complete
dataset assumption.
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