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Abstract

The paper discusses the problem to characterize collections of conditional independence
triples (independence model) that are representable by a discrete distribution. The known
results are summarized and the number of representable models over four elements set,
often mistakenly claimed to be 18300, is corrected. In the second part, the bounds for the
number of positively representable models over four elements set are derived.

1 Introduction

Conditional independence relationships occur
naturally among components of highly struc-
tured stochastic systems. In a field of graphical
Markov models, a graph (nodes connected by
edges) is used to represent the CI structure of a
set of probability distributions.

Given the joint probability distribution of
a collection of random variables it is easy to con-
struct the list of all CIs among them. On the
other hand, given the list (here called an inde-
pendence model) of CIs an interesting question
arises whether there exists a collection of dis-
crete random variables meeting these and only
these CIs, i.e. representing that model.

The problem of probabilistic representability
comes originally from J. Pearl, cf. (Pearl, 1998).
It was proved by M. Studený in (Studený, 1992)
that there is no finite characterization (≡finite
set of inference rules) of the set of representable
independence models.

The interesting point is that for the fixed
number of variables (or vertices) the number
of representable independence models is much
higher than the number of graphs. Therefore,
even partial characterization of representable
independence models may help to improve and
understand the limits of learning of Bayesian
networks and Markov models.

2 Independence models

For the reader’s convenience, auxiliary results
related to independence models are recalled in
this section.

Throughout the paper, the singleton {a} will
be shorten by a and the union of sets A∪B will
be written simply as juxtaposition AB. A ran-
dom vector ξ = (ξa)a∈N is a collection of ran-
dom variables indexed by a finite set N . For
A ⊆ N , a subvector (ξa)a∈A is denoted by ξA;
ξ∅ is presumed to be a constant. Analogously,
if x = (xa)a∈N is a constant vector then xA is
an appropriate coordinate projection.

Provided A, B, C are pairwise disjoint subsets
of N , “ξA⊥⊥ξB|ξC” stands for a statement ξA

and ξB are conditionally independent given ξC .
In particular, unconditional independence (C =
∅) is abbreviated as ξA⊥⊥ξB.

A random vector ξ = (ξa)a∈N is called dis-

crete if each ξa takes values in a state space
Xa such that 1 < |Xa| < ∞. A discrete random
vector ξ is called positive if for any appropriate
constant vector x

0 < P (ξ = x) < 1.

In the case of discretely distributed random vec-
tor, variables ξa and ξb are independent1 given

1The independence relation between random vectors



ξC iff for any appropriate constant vector xabC

P (ξabC = xabC)P (ξC = xC) =

P (ξaC = xaC)P (ξbC = xbC).

Let N be a finite set and TN denotes the set
of all pairs 〈ab|C〉 such that ab is an (unordered)
couple of distinct elements of N and C ⊆ N \ab.

Subsets of TN will be referred as formal in-

dependence models over N . Independence
models ∅ and TN are called trivial.

The independence model I(ξ) induced by a
random vector ξ indexed by N is the indepen-
dence model over N defined as follows

I(ξ) = {〈ab|C〉; ξa⊥⊥ξb|ξC} .

Let us emphasize that an independence model
I(ξ) uniquely determines also all other condi-
tional independences among subvectors of ξ, cf.
(Matúš, 1992).

Diagrams proposed by R. Lněnička will be
used for a visualisation of independence model
I over N such that |N | ≤ 4. Each element of
N is plotted as a dot. If 〈ab|∅〉 ∈ I then dots
corresponding to a and b are joined by a line. If
〈ab|c〉 ∈ I then we put a line between dots cor-
responding to a and b and add small line in the
middle pointing in c–direction. If both 〈ab|c〉
and 〈ab|d〉 are elements of I, then only one line
with two small lines in the middle is plotted.
Finally, if 〈ab|cd〉 ∈ I is visualised by a brace
between a and b. See example in Figure 1.
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Figure 1: Diagram of the independence model
I =

{
〈12|∅〉, 〈23|1〉, 〈23|4〉, 〈34|12〉, 〈14|∅〉,

〈14|2〉
}
.

Independence models I and I∗ over N will be
called isomorphic if there exists a permutation

ξ
A
, ξ

B
given ξ

C
might be defined analogously. However,

we will see that such relationships are uniquely deter-
mined by the elementary ones (|A| = |B| = 1).

π on N such that

〈ab|C〉 ∈ I ⇐⇒ 〈π(a)π(b)|π(C)〉 ∈ I∗,

where π(C) stands for {π(c); c ∈ C}. See Fig-
ure 2 for an example of three isomorphic models.

An equivalence class of independence models
with respect to the isomorphic relation will be
referred as type.

Figure 2: Example of three isomorphic models.

An independence model I is said to be repre-

sentable2 if there exists a discretely distributed
random vector ξ such that I = I(ξ). In addi-
tion, a special attention will be devoted to pos-

itive representations, i.e. representations by
a positive discrete distribution.

Let us note that isomorphic models are either
all representable or non-representable. Conse-
quently, we can classify types as representable
and non-representable.

Lemma 1. If I = I(ξ) and I∗ = I(ξ∗) are
representable independence models then the in-
dependence model I ∩ I∗ is also representable.
In particular, if they have positive representa-
tions then there exists a positive representation
of I ∩ I∗, too.

Proof. Let X =
∏

Xa and X ′ =
∏

X ′
a be state

spaces of ξ and ξ′, respectively. The required
representation ξ̂ takes place in

X̂ =
∏

a∈N

Xa ×X ′
a

and it is distributed as follows

P (ξ̂ = (xa, x
′
a)a∈N ) =

P (ξ = (xa)a∈N ) · P (ξ′ = (x′a)a∈N ).

See (Studený and Vejnarová, 1998), pp. 5, for
more details.

2Of course, it is also possible to consider repre-
sentability in other distribution frameworks that the dis-
crete distributions, cf. (Lněnička, 2005).



Figure 3: Irreducible models over N = {1, 2, 3, 4}.



Lemma 2. Let a, b, c be distinct elements of N

and D ⊆ N \ abc. If an independence models I

over N is representable, then

(
{〈ab|cD〉, 〈ac|D〉} ⊆ I

)
⇐⇒(

{〈ac|bD〉, 〈ab|D〉} ⊆ I
)
.

Moreover, if I is positively representable, then

(
{〈ab|cD〉, 〈ac|bD〉} ⊆ I

)
=⇒(

{〈ab|D〉, 〈ac|D〉} ⊆ I
)
.

Proof. These are so called “semigraphoid” and
“graphoid” properties, cf. (Lauritzen, 1996) for
the proof.

3 Representability of Independence

Models over N = {1, 2, 3, 4}

For N consisting of three or less elements, all
independence models not contradicting proper-
ties from Lemma 2 are representable, resp. pos-
itively representable, cf. (Studený, 2005). That
is why we focus on N = {1, 2, 3, 4} from now to
the end of the paper.

The first subsection summarizes known re-
sults related to (general) representability of in-
dependence models. The second subsection is
devoted to positive representability.

3.1 General Representability

The problem was solved in a brilliant series
of papers (Matúš and Studený, 1995), (Matúš,
1995) and (Matúš, 1999) by F. Matúš and
M. Studený. The final conclusions are clearly
and comprehensibly presented in (Studený and
Boček, 1994) and (Matúš, 1997)3.

In brief, due to Lemma 1 an intersection of
two representable models is also representable.
Therefore, the class of all representable models
over N can be described by a set of so called
irreducible models C, i.e. nontrivial repre-
sentable models that cannot be written as an
intersection of two other representable models.
It is not difficult to evidence that a nontrivial in-
dependence model I is representable if and only

3To avoid confusion, note that (Matúš, 1997) contains
a minor typo in Figure 14 on pp. 21. Over the upper
line in the first two diagrams should be ∅ instead of ∗.

if there exists A ⊆ C such that

I =
⋂

C∈A

C.

There are only only 13 types of irreducible
models, see Figure 3 or (Studený and Boček,
1994), pp. 277–278. The problematic point is
the total number of representable independence
models over N . It has been believed that this
number is 18300, cf. (Studený, 2002), (Lau-
ritzen and Richardson, 2002), (Robins et al.,
2003), (Šimeček, 2006). . . However, working on
this paper I have discovered that there actu-
ally exist 18478 different representable indepen-
dence models over N of 1098 types. The list of
models has been checked by several programs
including SG POKUS written by M. Studený
and P. Boček. The list can be downloaded from
the web page

http://5r.matfyz.cz/skola/models

3.2 Positive Representability

Only a little is known about positive rep-
resentability. This paper would like to be
the first step to the complete characterisation
of positively representable models over N =
{1, 2, 3, 4}.

Obviously, a set of positively representable
models is a subset of the set of (generally) repre-
sentable models. In addition, positively repre-
sentable model must fulfill properties following
the second part of Lemma 2 and Lemma 3 be-
low.

Lemma 3. Let a, b, c, d be distinct elements of
N . If I is a positively representable indepen-
dence model oven N such that

{〈ab|cd〉, 〈cd|ab〉, 〈cd|a〉} ⊆ I,

then
〈cd|b〉 ∈ I ⇐⇒ 〈cd|∅〉 ∈ I.

Proof. See (Spohn, 1994), pp. 15.

There are 5547 (generally) representable
models (356 types) meeting requirements on for
positively representable models from Lemma 2
and Lemma 3. This is the upper bound to the
set of all positively representable models.



Figure 4: Undecided types.



Again, this class of models A is generated by
its subset C by the operation of intersection.
The elements of C can be found by starting with
an empty set C and in each step adding the el-
ement of A not yet generated by C with the
greatest size. Actually, C contains (nontrivial)
models of 23 types (may be downloaded from
the mentioned web page).

To find some lower bound to the set of pos-
itively representable models, large amount of
positive binary (≡sample space {0, 1}N ) ran-
dom distributions have been randomly gener-
ated. The description of the generating pro-
cess will be omitted here4, see the above men-
tioned web page for the list of corresponding
independence models and their binary represen-
tations. Using Lemma 1 we obtained 4555 (299
types) different positive representations of inde-
pendence models. The remaining problematic
57 types are plotted in Figure 4.

3.3 Conclusion

Let us summarize the results into the conclud-
ing theorem.

Theorem 1. There are 18478 different (gener-
ally) representable independence models (1098
types) over the set N = {1, 2, 3, 4}. There are
between 4555 and 5547 different positively rep-
resentable independence models (299–356 types)
over the set N = {1, 2, 3, 4}.
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F. Matúš. 1997. Conditional independence struc-
tures examined via minors. The Annals of Math-
ematics and Artificial Intelligence, 21:99–128.
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