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Abstract

Mixtures of truncated exponentials (MTE) influence diagrams can represent decision prob-
lems with discrete decision variables without limitations on the distributions of continuous
chance variables or the nature of the utility functions. This paper presents an extension of
MTE influence diagrams that allows both discrete and continuous decision variables. This
new model—the continuous decision MTE influence diagram—develops decision rules for
continuous decision variables as a function of their continuous parents. In this model,
a continuous decision node is marginalized by replacing it with a deterministic chance
node and applying an operation derived from the method of convolutions in probability
theory. In experiments, continuous decision MTE influence diagrams provide an increase
in maximum expected utility when compared to existing methods.

1 Introduction

An influence diagram is a compact graphical
representation for a decision problem under un-
certainty. Initially, influence diagrams were
proposed by Howard and Matheson (1984) as
a front-end for decision trees. Subsequently,
Olmsted (1983) and Shachter (1986) developed
methods for evaluating an influence diagram di-
rectly without converting it to a decision tree.
These methods assume that all uncertain vari-
ables in the model are represented by discrete
probability mass functions (PMF’s) and that
decision variables have discrete state spaces.

Influence diagram models that permit con-
tinuous chance and decision variables include
Gaussian influence diagrams (Shachter and
Kenley, 1989), mixtures of Gaussians influence
diagrams (Poland and Shachter, 1993), and
linear-quadratic conditional Gaussian influence
diagrams (Madsen and Jensen, 2005). Each of
these models exploits multivariate normal prob-
ability theory to provide the decision strategy
and expected utility that solves the influence
diagram.

Cobb and Shenoy (2004) introduce mixtures

of truncated exponentials (MTE) influence di-
agrams, which are influence diagrams where
probability distributions and utility functions
are represented by MTE potentials. Decision
variables in MTE influence diagrams must have
discrete state spaces; however, many decision
problems in practice have continuous decision
variables.

Consider the following decision problem from
economics (see Figure 1):

A monopolist faces uncertain demand
dependent on favorable (M = 1) or
unfavorable (M = 0) market condi-
tions. Demand is reflected in the price
(P) it receives for its output (Q). The
monopolist cannot directly observe de-
mand, but rather relies on the re-
sults (R) of a market survey to gauge
demand, and thus predict price (P).
Based on the survey results (R), the
monopolist must determine its optimal

output (Q).

The monopolist can produce from 0 to 70
units and has the following utility function:
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Figure 1: An influence diagram for the monop-
olist’s decision problem.
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uo(p,q) = (p —5) - ¢ —200000. The probabil-
ity of an unfavorable market (M = 0) is 0.40.
The mean of the conditional Gaussian proba-
bility density function (PDF) for price (P) is a
linear function of quantity (@) produced, which
is based on the market conditions as follows:
P | {Q,M = 0} ~ N(5000 — 70q,100%) and
P |{Q,M = 1} ~ N(10000 — 50¢,1000%). Test
results (R) are given as a percentage of con-
sumers surveyed who intend to buy the product
and are modeled by the following beta PDF’s:
R|M =0~ Beta(1.3,2.7) and R | M =1 ~
Beta(2.7,1.3).

Influence diagrams with continuous deci-
sion variables and non-Gaussian continuous
chance variables are difficult to solve using
current methodology. This paper introduces
the continuous decision MTE influence diagram
(CDMTEID), a model which allows any combi-
nation of discrete and continuous chance vari-
ables with no restrictions on the type of prob-
ability distribution, as well as discrete and/or
continuous decision variables. CDMTEID’s can
also accommodate conditionally deterministic
chance variables. An operation derived from
the method of convolutions in probability the-
ory is used to eliminate a continuous decision
node during the solution phase in a CDMTEID.

The remainder of this paper is organized
as follows. Section 2 gives notation and def-
initions. Section 3 describes operations used
to solve CDMTEID’s. Section 4 presents the
CDMTEID solution to the example problem.
Section 5 provides conclusions. This paper is
extracted from a longer working paper (Cobb,
2006).

Figure 2: Influence diagram for Example 1.

2 Notation and Definitions

2.1 Notation

Variables will be denoted by capital letters, e.g.,
A,B,C. Sets of variables will be denoted by
boldface capital letters, Y if all are discrete
chance variables, Z if all are continuous chance
variables, D if all are decision variables, or X
if the components are a mixture of discrete
chance, continuous chance, and decision vari-
ables. If X is a set of variables, x is a configu-
ration of specific states of those variables. The
discrete, continuous, or mixed state space of X
is denoted by Qx.

MTE probability potentials, discrete proba-
bility potentials, and deterministic potentials
are denoted by lower-case greek letters, e.g., a,
B, v. MTE utility potentials are denoted by wu;.

In graphical representations, decision vari-
ables are represented by rectangular nodes
(with a single border for discrete and a dou-
ble border for continuous), chance variables are
represented by ovals (with a single border for
discrete, a double border for continuous, and a
triple border if the chance variable is determin-
istic), and utility functions are represented by
diamonds.

Example 1. Consider the influence diagram in
Figure 2. In this model, M is a discrete variable
which can take on values M =0 or M = 1. The
variables R and () are continuous chance vari-
ables, with @@ a deterministic chance variable
(Q is conditionally deterministic given a value
of R). The utility function (ug) is a continuous
function of Q.

2.2 Mixtures of Truncated
Exponentials

A mixture of truncated exponentials (MTE) po-
tential in an influence diagram has the following



definition, which is a modification of the defini-
tion proposed by Rumi and Salmerén (2005).

MTE potential. Let X be a mixed n-
dimensional variable. Let Y = (Y1,...,Yy),
Z = (Z,...,%;), and D = (Dy,...,Dy) be
the discrete chance, continuous chance, and de-
cision variable parts of X, respectively, with
c+d+ f =n. A function ¢ : Qx — RT is
an MTE potential if one of the next three con-
ditions holds:

1. YUD = () and ¢ can be written as

d(x) = ¢(z) = ag + Zai exp{ Zbgj)zj}
i=1 j=1
(1)

for all x € Qx, where a;,2 = 0,...,m and
B i=1
1 7

bers.

y-..,m,j=1,..., carereal num-

22Y UD = ( and there is a partition
Q1,...,Q of Qz into hypercubes such that
¢ is defined as

p(x) = gp(x) ifxeQy  (2)

where each ¢p,h = 1,...,k can be written
in the form of equation (1) (i.e. each ¢y, is
an MTE potential on Qp).

3. YUD # ) and for each fixed value (y,d) €
Qvyup, ¢y.a(z) can be defined as in (2).

In the definition above, k£ is the number of
pieces, and m is the number of exponential
terms in each piece of the MTE potential. In the
third case, the potential fragments ¢y q(z) for
all (y,d) € Qy, p constitute the MTE potential
for {Y,Z,D}. In this paper, all MTE proba-
bility and utility potentials are equal to zero in
unspecified regions. In CDMTEID’s, all proba-
bility distributions and utility functions are ap-
proximated by MTE potentials.

The definition presented here assumes that
decision variables are discrete. This paper
presents a method for developing a decision rule
for a continuous decision variable as a function

of its continuous parents; however, the MTE
representation of this method first uses a dis-
crete approximation to the continuous decision
variable.

2.3 MTE Probability Densities

Suppose ¢’ is an input MTE potential for X =
Y UZ UD representing a PDF for Z € Z given
its parents X \ {Z}. If we can verify that

¢I(Xaz) dz=1, (3)
Qg

for all x € Qx\z, we state that ¢’ is an MTE
density for Z. We assume that all input MTE
probability potentials in a CDMTEID are nor-
malized prior to the solution phase.

2.4 Deterministic Potential

A deterministic potential describes the linear
deterministic relationship between a set of vari-
ables Z = {Z1,...,Z.}. A deterministic poten-
tial (Cobb and Shenoy, 2005) for Z is defined as

an equation

l9(z) = 0] = {wp - [9p(2) = O},_, , (4)

where wpy, p = 1,...,P are constants. The
equation gp(z) = 0 defines a linear determin-
istic relationship, where g,(z) = apiz1 + --- +
apeze + by, and where ay1,...,ap. and b, are
real numbers. The coefficient a,; on Z; € Z is
equal to 1 when the deterministic potential is
specified as a conditional potential for Z; given
Z \ Z;. The factors wy - [gp(z) = 0] are main-
tained as a decomposed set of weighted equa-
tions, with w, representing the weights for all
p = 1,...P. The weights (wp) typically result
from the marginalization of a discrete variable,
as shown in Example 3 in Section 3.2.1.

We term [g(z) = 0] a potential
in the sense that any variable Z;
takes on the value z = (—apiz1—---
—0Qpi—12i—1 — Qpi+124+1 — *** — Apclc — bp) /apz'

with probability 1 and any other value with
probability 0. As with MTE potentials, mul-
tiple fragments of the form in (4) can define a
deterministic potential for a set of variables X.



The fragments can be parameterized by either
sets of discrete chance and decision variables,
or by partitions of hypercubes of continuous
chance variables, as shown below.

Example 2. In the influence diagram of Fig-
ure 2, @ is conditionally deterministic given
R. This relationship is represented by the de-
terministic potential fragment [go(gq,7) = 0] or
[q — 46.667r — 30.112 = 0] if 0 < r < 0.8547,
and by the deterministic potential fragment
[91(¢,r) =0] or [g—0r—70 =0] if 0.8547 < r <
1.

3 Solving CDMTEID’s

CDMTEID’s are solved by using the fusion al-
gorithm developed by Shenoy (1993) and the
operations presented in this section. The fusion
algorithm involves deleting variables from the
network in a sequence which respects the infor-
mation constraints (represented by arcs point-
ing to decision variables in influence diagrams)
in the problem. This condition ensures that un-
observed chance variables are deleted before de-
cision variables. The fusion method applies to
problems where there is only one utility func-
tion (or a joint utility function which factors
multiplicatively into several utility potentials).

Combination of two MTE potentials is point-
wise multiplication. Marginalization of chance
variables from MTE potentials is integration
over continuous chance variables being removed
and summation over discrete chance variables
being removed. Details of these two opera-
tions can be found in (Cobb and Shenoy, 2004).
Other combination and marginalization oper-
ations required for CDMTEID’s are described
below.

3.1 Combination of MTE and
Deterministic Potentials

Let ¢y d(z1) be an MTE probability potential
on X = YUZUD and let [gy a(z2) = 0] be
a deterministic potential on X = Y UZ U D,
where Z = Z; UZ;. The combination of ¢y q
and gy q is a potential ¢ for X defined as

D
OO

Figure 3: Influence diagram for Example 3.

Cy,a(2z) = (¢y,a ® gy,d>y,d (z)
= ({¢y.a(z1), [gy.a(z2) = 01}) ,

for all z € Qz. According to the LAZY prop-
agation scheme (Madsen and Jensen, 1999) the
potentials are not combined, but rather main-
tained as a decomposed set of potentials during
combination.

(5)

3.2 Marginalization

3.2.1 Discrete Chance Variables from
MTE and Deterministic
Potentials

This operation is illustrated by example (see
(Cobb, 2006) for a formal definition).

Example 3. Consider the influence diagram
in Figure 3, where P(Y = 0) = 0.5 and
P(Y = 1) = 0.5. The variable X is condition-
ally deterministic given {Y,Z}, a relationship
represented by the deterministic potential
fragments go(x,z,Y = 0) = [z — 2z + 1 = 0]
and ¢1(z,2,Y = 1) = [x — 0252 — 1 = 0].
The removal of Y from the combination
of g for {X,Y,Z} and the PMF for Y re-
sults in the following deterministic potential:
{0.5-[x —224+1=0],0.5- [z —0.252 — 1 =0]}.

The values for the deterministic potential are
weighted with the probability values upon re-
moval of the discrete variable.

3.2.2 Continuous Chance Variables
from MTE and Deterministic
Potentials

Marginalization of a continuous variable Z;
from the combination of an MTE potential and
a deterministic potential is substitution of the
inverse of the equation(s) in the deterministic



potential into the MTE potential. This opera-
tion is derived from the method of convolutions
in probability theory, as explained in (Cobb and
Shenoy, 2005).

Let ¢y a(z1) be an MTE potential on X; =
Y UZ; UD and let [gy q(z2) = 0] be a deter-
ministic potential on Xo = Y U Zy UD. As-
sume Z = Z1 U Zy, X = X UXy, and that
each [gy dp(z2) = 0], p = 1,..., P, is invertible
in Z; € (Z1 N Z2). The marginal of {¢y,d7gy,d}
for a set of variables X' =Y U(Z\ Z;)UD C X
is computed as

XI
(¢y,a® gy,d);d (z')

P
= Z 'K’p ’ wp ’ ¢st (hyadzp (ZIZ) 7Z,1) ?
p=1

(6)

for all x" € Qxr where z = (7, z;), z1 = (2}, ),
7o = (z, z;), and

hy.dp(zy) = (—aprzy — -+~

—Qpi—1%2i—1 — Gpi+1244+1 — *°° — QpcRe

The constant K, is ﬁ if ¢y q is an MTE
Api

probability potential and 1 if ¢y 4 is an MTE
utility potential, where a,; represents the coef-
ficient on variable Z; in gy g p(22)-

3.2.3 Discrete Decision Variables

Marginalization with respect to a discrete de-
cision variable is only defined for MTE utility
potentials. Let u be an MTE utility poten-
tial for X =Y UZUD, where D € D. The
marginal of u for a set of variables X — {D} is
an MTE utility potential computed as

UX—{D}) n_
u (y,z,d") gggﬁtL(y,z,d) (7)

for all (y,z,d') € Qx_(p) where d = (d’,d).
Marginalization of decision variables results in
an MTE potential. For details, see Cobb and
Shenoy (2004).

3.2.4 Continuous Decision Variables

Eliminating a continuous decision variable
from a CDMTEID is a three-step process:

—by) [api -

Step 1: Create a discrete approximation to the
continuous decision variable and apply the
procedure in Section 3.2.3.

Step 2: Using least squares regression, create
a decision rule for the continuous decision
variable as a function of its continuous par-
ent(s).

Step 3: Construct a deterministic potential
from the decision rule developed in Step
2, convert the continuous decision vari-
able to a deterministic chance variable, and
marginalize the variable using the proce-
dure in Section 3.2.2.

This operation will be described for the case
where a decision variable has one continuous
parent, but multivariate regression can be used
to extend the operation for the case where a
decision variable has multiple continuous par-
ents. Suppose we want to eliminate a contin-
uous decision variable D with continuous par-
ent Z from the influence diagram using the fu-
sion algorithm. Let u be an MTE utility po-
tential for {Z, D}. First, a v-point discrete ap-
proximation is created for D. Each qualitative
state of the discrete approximation corresponds
with a real numbered value in the continuous
state space of the variable, Qp = {d : dnin <
d < dpaz}- The real numbered values associ-
ated with the qualitative states are determined
as dy = dpin + (t = 0.5) - (dmaz — dmin) /v for
t = 1,...,v. For simplicity, the qualitative
states will also be referred to as dy, ..., d,.

Marginalization of D from the utility poten-
tial u involves finding the value of d; that maxi-
mizes u for each point in the continuous domain
of Z. The following k-piece component MTE
potential for Z is derived from the discretized
continuous decision variable D using the proce-
dure in Section 3.2.3:

ui(z) ifeg<z<e

us(z) ife; <z<eo
umaac(z) =

ug(z) ifep_q <z <eg

where e; 1 and e; are the lower and upper
bounds of the domain of the variable Z in j-



th piece of the MTE utility potential t,,qz, as
determined by the procedure in Section 3.2.3.
These bounds are defined such that (e;_1,¢€;) N
(ej—1,ej) =0 for all i,j = 1,...,k, i # j and
Uj=1 (€j-1,€5) = (2min, #maz), Where the state
space of Z is given as Qz = {2 : zmin < 2 <
Zmazt- Let ¥(z) = {d(l),...,d(k)} be a vec-
tor of real-numbered values d; of the decision
variable D that correspond with wq,...,u; in
Umaz, 1.6. ¥ is the decision rule obtained upon
the removal of D. The decision rule is a func-
tion where ¥(z) = dV) if e; 1 < 2z < ¢; for all
j=1,...,k.

The decision rule ¥ is transformed to a de-
cision rule ¥ that is stated as a function of
Z. Using least squares regression, we obtain
a linear equation of the form f(z) = by + b1 2.
The values b = [by, b1] are calculated as b =

(ATA) T AT where © = [d1),d®, ... d®]T
and

1 eptel
2
ei1tes
Aot 2
ex—1teg
1 2

The decision rule is then stated as

dmin if bg + b1z < dpin
A bo + b1z
\I[(Z) N if dpin < bg + b12 < dipas
dmaz if bg + b1z > dmaa ,
where the first and third regions of ¥(z) are
added to ensure D takes on a value within its
state space. The decision rule above is used to
construct a deterministic potential [g(z, d) = 0].
Variable D has been converted to a determin-
istic chance variable and is eliminated from the
model by using the operation described in Sec-
tion 3.2.2.

The class of MTE potentials is closed under
each of the operations required to solve MTE in-
fluence diagrams (Cobb and Shenoy, 2004) and
the convolution operation used to eliminate con-
tinuous decision variables (Cobb and Shenoy,
2005).

Figure 4: The MTE potential fragments which
constitute the MTE potential 5 for {R, M}.

4 Example

This section presents the CDMTEID solution
to the monopolist’s decision problem. Addi-

tional numerical details of MTE potentials can
be found in (Cobb, 2006).

4.1 Representation

The MTE potential for P given {M,Q} is a 2-
piece MTE approximation to the normal PDF
(Cobb and Shenoy 2006a) with g = 5000 — 70q
and 02 = 100? given M = 0, and pu = 10000 —
50¢ and o = 1000% given M = 1. The po-
tential 7 for {P, M,Q} has potential fragments
7(p,¢, M = 0) and v(p,q, M = 1).

The MTE approximation to the utility func-
tion ug for { P, Q} is denoted by u; and is deter-
mined using the procedure described in (Cobb
and Shenoy, 2004). MTE approximations to
the beta PDF’s for R given M are constructed
using the procedure in (Cobb et al., 2006).
These MTE potential fragments—which consti-
tute the MTE potential § for { R, M }—are dis-
played graphically in Figure 4 overlayed on the
corresponding beta PDF’s. The PMF for M is
represented by the potential o where a(0) =
P(M =0)=04 and a(1) = P(M =1) =0.6.

Although @ is a continuous decision variable,
we will initially use a three-point (v = 3) dis-
crete approximation with ¢; = 11.667, go = 35,
and g3 = 58.333 to apply the solution proce-
dure.

4.2 Solution

The CDMTEID solution proceeds by eliminat-
ing the variables in the sequence P, M, @, R.
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Figure 5: The utility potential fragments which
constitute the utility potential us.

To remove P, we calculate us = (u; ® W)HM’Q}.

The values for us are calculated as

uz(g, M = 0) =/

Qp

us(q, M =1) :/Q u1(p,q) -y(pyg, M =1) dp .

P

To remove M, we calculate wug =
(uz®a®ﬁ)¢{Q’R}. The utility potential
fragments ug(r,@ = q1), us(r,@Q = ¢2), and
ug(r,@Q = gq3) are shown graphically in Fig-
ure 5. Removing @ involves first finding
MaX{Ug(T,Q = q1)7u3(T7Q = QQ),U?,(’I“,Q =
g3)} at each point in the domain of R. In this
case, we find u3(r,Q = ¢) ~ u3(r,@ = gs)
at R = 0.2095. Next, the decision rule is
developed by using this value.

4.2.1 Creating a Decision Rule for a

Continuous Decision Variable

Using the procedure in Section 3.2.3, we de-
termine the optimal strategy of producing @) =
g2 =35 if 0 < r < 0.2095, and @ = g3 = 58.333
if 0.2095 < r < 1. Using least squares regres-
sion (see Section 3.2.4), the following decision
rule is obtained:

U(r) =
46.667 - r +30.112  if 0 < r < 0.8547
70 if 0.8547 <r <1

To convert () to a deterministic chance variable,
we use U(r) to define the deterministic poten-
tial g for {Q, R} as in Example 2 of Section 2.4
(the domain of R precludes the possibility of
producing zero units).

u1(p,q) - Y(p, g, M =0) dp ,

Table 1: Decision strategy for an CDMTEID
solution with eight states for Q.

Test Results (R)  Quantity Produced (Q)

0<r <0.1655 Q=39.375
0.1655 < r < 0.2895 Q=48.125
0.2895 < r < 0.3975 Q=56.875
03975 <r<1 Q=65.625

A CDMTEID solution with eight discrete
states for the decision variable () yields the de-
cision rule in Table 1 (some states of @ are

not optimal for any values of R). Define © =
[39.375, 48.125, 56.875, 65.625] T and

1 % 1 0.08275
N 1 w _ 1 0.2275
1 w 1 0.3435
1 % 1 0.69875

The resulting decision rule is based on the lin-
ear equation f(r) = 41.403r + 38.501 and the
deterministic potential [¢g(r,q) = 0] for {Q, R}
has fragments [go(r,q) = 0] or [¢ — 41.403r —
38.501 = 0] if 0 < r < 0.7608 and [g1(r,q) = 0]
or [ —0r —70 =0] if 0.7608 < r < 1.

4.2.2 Converting the Decision Variable
to a Deterministic Chance
Variable

To eliminate the decision variable (), we con-
sider the revised influence diagram in Figure 2
that replaces the decision node with a determin-
istic probability node. The potentials remaining
after ) is converted to a deterministic chance
variable are ug for {@, R} and g for {@, R}. To
marginalize a continuous chance variable from
the combination of a utility potential and a de-
terministic potential, we substitute an expres-
sion obtained from the deterministic potential
for the variable to be removed into the utility
potential, as detailed in Section 3.2.2. In this
case, a new MTE utility potential is:

u3(46.667 - r + 30.112,7)
if 0 < r < 0.8547
if 0.8547 <r <1

ug(r) =
U3(70,T‘)



Integrating u4 over the domain of R gives the
final expected utility of 83729. Creating the de-
cision rule specified by the function ¥(r) yields
an increase in expected value of 9210 over the
decision rule created using an MTE influence
diagram with a discrete decision variable. Us-
ing the same procedure, the maximum expected
utility for the monopolist using a CDMTEID
with eight discrete states for @ is 89686, which
is 3053 higher than an MTE influence diagram
with eight states for Q. Cobb (2006) gives a de-
tailed comparison of the CDMTEID solution to
similar MTE and discrete influence diagrams.

5 Conclusions

Continuous decision MTE influence diagrams—
which determine a decision rule for a continuous
decision variable as a function of its continuous
parents—show potential to improve decision-
making at a lower computational cost than dis-
crete influence diagrams or MTE influence di-
agrams. Previous methods for handling con-
tinuous decision variables in influence diagrams
require either normal distributions for contin-
uous chance variables and/or discrete approxi-
mations to continuous decision variables. The
continuous decision MTE influence diagram al-
lows a more precise decision rule and the ability
to exploit the continuous nature of test results.
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