
Selecting Strategies for Infinite-Horizon Dynamic LIMIDs

Marcel A.J. van Gerven
Institute for Computing and Information Sciences

Radboud University Nijmegen
Toernooiveld 1

6525 ED Nijmegen, The Netherlands

Francisco J. D́ıez
Department of Artificial Intelligence, UNED

Juan del Rosal 16
28040 Madrid, Spain

Abstract

In previous work we have introduced dynamic limited-memory influence diagrams (DLIM-
IDs) as an extension of LIMIDs aimed at representing infinite-horizon decision processes.
If a DLIMID respects the first-order Markov assumption then it can be represented by
2TLIMIDS. Given that the treatment selection algorithm for LIMIDs, called single policy
updating (SPU), can be infeasible even for small finite-horizon models, we propose two
alternative algorithms for treatment selection with 2TLIMIDS. First, single rule updating
(SRU) is a hill-climbing method inspired upon SPU which needs not iterate exhaustively
over all possible policies at each decision node. Second, a simulated annealing algorithm
can be used to avoid the local-maximum policies found by SPU and SRU.

1 Introduction

An important goal in artificial intelligence is to
create systems that make optimal decisions in
situations characterized by uncertainty. One
can think for instance of a robot that navigates
based on its sensor readings in order to achieve
goal states, or of a medical decision-support sys-
tem that chooses treatments based on patient
status in order to maximize life-expectancy.

Limited-memory influence diagrams (LIM-
IDs) are a formalism for decision-making un-
der uncertainty (Lauritzen and Nilsson, 2001).
They generalize standard influence diagrams
(Howard and Matheson, 1984) by relaxing the
assumption that the whole observed history is
taken into account when making a decision, and
by dropping the requirement that a complete or-
der is defined over decisions. This increases the
size and variety of decision problems that can
be handled, although possibly at the expense
of finding only approximations to the optimal

strategy. Often however, there is no predefined
time at which the process stops (i.e. we have
an infinite-horizon decision process) and in that
case the LIMID would also become infinite in
size. In previous work, we have introduced dy-
namic LIMIDs (DLIMIDs) and two-stage tem-
poral LIMIDs (2TLIMIDs) as an extension of
standard LIMIDs that allow for the representa-
tion of infinite-horizon decision processes (van
Gerven et al., 2006). However, the problem of
finding acceptable strategies for DLIMIDs has
not yet been addressed. In this paper we discuss
a number of techniques to approximate the opti-
mal strategy for infinite-horizon dynamic LIM-
IDs. We demonstrate the performance of these
algorithms on a non-trivial decision problem.

2 Preliminaries

2.1 Bayesian Networks

Bayesian networks (Pearl, 1988) provide for a
compact factorization of a joint probability dis-

tribution over a set of random variables by ex-
ploiting the notion of conditional independence.
One way to represent conditional independence
is by means of an acyclic directed graph (ADG)
G where vertices V (G) correspond to random
variables X and the absence of arcs from the
set of arcs A(G) represents conditional indepen-
dence. Due to this one-to-one correspondence
we will use vertices v ∈ V (G) and random vari-
ables X ∈ X interchangeably. A Bayesian net-
work (BN) is defined as B = (X, G, P), such
that the joint probability distribution P over X

factorizes according to G:

P (X) =
∏

X∈X

P (X | πG(X))

where πG(X) = {X ′ | (X ′,X) ∈ A(G)} denotes
the parents of X. We drop the subscript G when
clear from context. We assume that (random)
variables X can take values x from a set ΩX and
use x to denote an element in ΩX = ×X∈X ΩX

for a set X of (random) variables.

2.2 LIMIDs

Although Bayesian networks are a natural
framework for probabilistic knowledge represen-
tation and reasoning under uncertainty, they
are not suited for decision-making under un-
certainty. Influence-diagrams (Howard and
Matheson, 1984) are graphical models that ex-
tend Bayesian networks to incorporate decision-
making but are restricted to the representation
of small decision problems. Limited-memory
influence diagrams (LIMIDs) (Lauritzen and
Nilsson, 2001) generalize standard influence-
diagrams by relaxing the no-forgetting assump-
tion, which states that, given a total ordering of
decisions, information present when making de-
cision D is also taken into account when making
decision D′, if D precedes D′ in the ordering. A
LIMID is defined as a tuple L = (C,D,U, G, P)
consisting of the following components. C rep-
resents a set of random variables, called chance
variables, D represents a set of decisions avail-
able to the decision maker, where a decision
D ∈ D is defined as a variable that can take on
a value from a set of choices ΩD, and U is a set
of utility functions, which represent the utility

of being in a certain state as defined by config-
urations of chance and decision variables. G is
an acyclic directed graph (ADG) with vertices
V (G) corresponding to C∪D∪U, where we use
V to denote C ∪ D. Again, due to this corre-
spondence, we will use nodes in V (G) and cor-
responding elements in C∪D∪U interchange-
ably. The meaning of an arc (X,Y) ∈ A(G) is
determined by the type of Y . If Y ∈ C then
the conditional probability distribution associ-
ated with Y is conditioned by X. If Y ∈ D then
X represents information that is present to the
decision maker prior deciding upon Y . We call
π(Y) the informational predecessors of Y . The
order in which decisions are made in a LIMID
should be compatible with the partial order in-
duced by the ADG and are based only on the
parents π(D) of a decision D. If Y ∈ U then
X takes part in the specification of the utility
function Y such that Y : Ωπ(Y) → R. In this pa-
per, it is assumed that utility nodes cannot have
children and the joint utility function U is ad-
ditively decomposable such that U =

∑
U∈U

U .
P specifies for each d ∈ ΩD a distribution

P (C : d) =
∏

C∈C

P (C | π(C))

that represents the distribution over C when
we externally set D = d (Cowell et al., 1999).
Hence, C is not conditioned on D, but rather
parameterized by D, and if D is unbound then
we write P (C : D).

A stochastic policy for decisions D ∈ D is de-
fined as a distribution PD(D | π(D)) that maps
configurations of π(D) to a distribution over al-
ternatives for D. If PD is degenerate then we
say that the policy is deterministic. A strategy
is a set of policies ∆ = {PD : D ∈ D} which
induces the following joint distribution over the
variables in V:

P∆(V) = P (C : D)
∏

D∈D

PD(D | π(D)).

Using this distribution we can compute the ex-
pected utility of a strategy ∆ as E∆(U) =∑

v
P∆(v)U(v). The aim of any rational deci-

sion maker is then to maximize the expected
utility by finding the optimal strategy ∆∗ ≡
arg max∆ E∆(U).

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

C1

D1

C2

U1

· · ·

L0 Lt DLIMID

Figure 1: Chance nodes are shown as circles, decision nodes as squares and utility nodes as dia-
monds. The 2TLIMID (left) can be unrolled into a DLIMID (right), where large brackets denote
the boundary between subsequent times. Note that due to the definition of a 2TLIMID, the infor-
mational predecessors of a decision can only occur in the same, or the preceding time-slice.

2.3 Dynamic LIMIDs and 2TLIMIDs

Although LIMIDs can often represent finite-
horizon decision processes more compactly than
standard influence diagrams, they cannot rep-
resent infinite-horizon decision processes. Re-
cently, we introduced dynamic LIMIDs (DLIM-
IDs) as an explicit representation of decision
processes (van Gerven et al., 2006). To repre-
sent time, we use T ⊆ N to denote a set of time
points, which we normally assume to be an in-
terval {u | t ≤ u ≤ t′, {t, u, t′} ⊂ N}, also writ-
ten as t : t′. We assume that chance variables,
decision variables and utility functions are in-
dexed by a superscript t ∈ T, and use CT, DT

and UT to denote all chance variables, decision
variables and utility functions at times t ∈ T,
where we abbreviate CT ∪ DT with VT.

A DLIMID is simply defined as a LIMID
(CT,DT,UT, G, P) such that for all pairs of
variables Xt, Y u ∈ VT ∪ UT it holds that if
t < u then Y u cannot precede Xt in the or-
dering induced by G. If T = 0 : N , where
N ∈ N is the (possibly infinite) horizon, then
we suppress T altogether, and we suppress in-
dices for individual chance variables, decision
variables and utility functions when clear from
context. If a DLIMID respects the Markov
assumption that the future is independent of
the past, given the present, then it can be
compactly represented by a 2TLIMID (see Fig.
1), which is a pair T = (L0,Lt) with prior
model L0 = (C0,D0,U0, G0, P 0) and transition
model Lt = (Ct−1:t,Dt−1:t,Ut, G, P) such that

for all V t−1 ∈ Vt−1:t in the transition model
it holds that πGt(V t−1) = ∅. The transition
model is not yet bound to any specific t, but
if bound to some t ∈ 1 : N , then it is used
to represent P (Ct : Dt−1:t) and utility func-
tions U ∈ Ut, where both G and P do not
depend on t. The prior model is used to rep-
resent the initial distribution P 0(C0 : D0) and
utility functions U ∈ U0. The interface of the
transition model is the set It ⊆ Vt−1 such that
(V t−1

i , V t
j) ∈ A(G) ⇔ V t−1

i ∈ It. Given a hori-
zon N , we may unroll a 2TLIMID for n time-
slices in order to obtain a DLIMID with the
following joint distribution:

P (C,D) = P 0(C0 : D0)

N∏

t=1

P (Ct : Dt−1:t).

Let ∆t = {P t
D(D | πG(D)) | D ∈ Dt} denote

the strategy for a time-slice t and let the whole
strategy be ∆ = ∆0 ∪ · · · ∪ ∆N . Given ∆0, L0

defines a distribution over the variables in V0:

P∆0(V0) = P 0(C0 : D0)
∏

D∈D0

PD(D | πG0(D))

and given a strategy ∆t with t > 0, Lt defines
the following distribution over variables in Vt:

P∆t(Vt | It) = P (Ct : Du)
∏

D∈Dt

PD(D | πG(D))

with u = t − 1 : t. Combining both equations,
given a horizon N and strategy ∆, a 2TLIMID
induces a distribution over variables in V:

P∆(V) = P∆0(V0)

N∏

t=1

P∆t(Vt | It). (1)

Let U0(V0) =
∑

U∈U0 U(πG0(U)) denote the
joint utility for time-slice 0 and let U t(Vt-1:t) =∑

U∈Ut U(πG(U)) denote the joint utility for
time-slice t > 0. We redefine the joint utility
function for a dynamic LIMID as

U(V) = U0(V0) +

N∑

t=1

γtU t(Vt-1:t)

where γ with 0 ≤ γ < 1 is a discount factor,
representing the notion that early rewards are
worth more than rewards earned at a later time.

In this way, we can use DLIMIDs to represent
infinite-horizon Markov decision processes.

2.4 Memory variables

Figure 1 makes clear that the informational pre-
decessors of a decision variable Dt can only oc-
cur in time-slices t or t−1 (viz. Eq. 1). Observa-
tions made earlier in time will not be taken into
account and as a result, states that are qualita-
tively different can appear the same to the deci-
sion maker, which leads to suboptimal policies.
This phenomenon is known as perceptual alias-
ing (Whitehead and Ballard, 1991). We try to
avoid this problem by introducing memory vari-
ables that represent a summary of the observed
history. With each observable variable V ∈ V,
we associate a memory variable M ∈ C, such
that the parents of a memory variable are given
by π(M0) = {V 0} and π(M t) = {V t,M t−1}
for t ∈ {1, . . . , N} and all children of M t, with
t ∈ {0, . . . , N}, are decision variables D ∈ Dt.

Figure 2 visualizes the concept of a memory
variable, and is used as the running example
for this paper. It depicts a 2TLIMID for the
treatment of patients that may or may not have
a disease D. The disease can be identified by a
finding F , which is the result of a laboratory test
L, having an associated cost that is captured by
the utility function U2. The memory concern-
ing findings is represented by the memory vari-
able M , and based on this memory, we decide
whether or not to perform treatment T , which
has an associated cost, captured by the utility
function U3. Memory concerning past findings
will be used to decide whether or not to perform
the laboratory test. If the patient has the dis-
ease then this decreases the chances of patient

D0

F 0

L0

S0

U1

1
U0

2

M0

T 0

U0

3

D1

F 1

L1

S1

U1

1
U1

2

M1

T 1

U1

3

Figure 2: A DLIMID for patient treatment as
specified by a 2TLIMID.

survival S. Patient survival has an associated
utility U1. An initial strategy, as for instance
suggested by a physician, might be to always
treat and never test.

There are various ways to define ΩM and
the distributions P (M0 | V 0) and P (M t |
V t,M t−1) for a memory variable M . The opti-
mal way to define our memory variables is prob-
lem dependent, and we assume that this defini-
tion is based on the available domain knowl-
edge. For our running example, we choose
ΩM = {a, n, p} × {a, n, p} × {a, n, p}, where
a stands for the absence of a finding, n for a
negative finding, and p for a positive finding,
which is evidence for the presence of the dis-
ease. M t = (z, y, x) then denotes the current
finding x, the finding in the previous time-slice
y, and the finding two time-slices ago z. If the
new finding is F t+1 = f then M t+1 = (y, x, f),
and since we have not yet observed any findings
at t = 0, the initial memory is (a, a, a) if we did
not test and (a, a, n) or (a, a, p) if the test was
performed.

3 Improving Strategies in

Infinite-Horizon DLIMIDs

Although DLIMIDs constructed from 2TLIM-
IDs can represent infinite-horizon Markov deci-
sion processes, to date, the problem of strategy
improvement using 2TLIMIDs has not been ad-
dressed. In this section, we explore techniques
for finding strategies with high expected utility.

3.1 Single Policy Updating

One way to improve strategies in standard LIM-
IDs is to use an iterative procedure called single
policy updating or SPU for short (Lauritzen and
Nilsson, 2001). Let ∆0 = {p1, . . . , pn} be an or-
dered set representing the initial strategy where
pj, 1 ≤ j ≤ n stands for a (randomly initialized)
policy PDj

for a decision Dj . We say pj is the lo-
cal maximum policy for a strategy ∆ at decision
Dj if E∆(U) cannot be improved by changing
pj. Single policy updating proceeds by iterat-
ing over all decision variables (called a cycle)
to find local maximum policies, and to reiterate
until no further improvement in expected util-
ity can be achieved. SPU converges in a finite
number of cycles to a local maximum strategy ∆
where each pj ∈ ∆ is a local maximum policy.
Note that this local maximum strategy is not
necessarily the global maximum strategy ∆∗.

To find local maximum policies in standard
LIMIDs, Lauritzen and Nilsson (2001) use a
message passing algorithm, optimized for sin-
gle policy updating. In this paper, we re-
sort to standard inference algorithms for finding
strategies for (infinite-horizon) DLIMIDs. We
make use of the fact that given ∆, a LIMID
L = (C,D,U, G, P) may be converted into a
Bayesian network B = (X, G′, P ′). Since ∆ in-
duces a distribution over variables in V (viz.
Eq. 1), we can use ∆ to convert decision vari-
ables D ∈ D to random variables X ∈ X with
parents πG(D) such that P (X | πG′(X)) =
PD(D | πG(D)). Additionally, utility functions
U ∈ U may be converted into random vari-
ables X by means of Cooper’s transformation
(Cooper, 1988), which allows us to compute
E∆(U). We use B(L,∆) to denote this conver-
sion of a LIMID into a Bayesian network.

Single policy updating cannot be applied di-
rectly to an infinite-horizon DLIMID since com-
puting E∆(U) would need an infinite number of
steps. In order to approximate the expected
utility given ∆, we assume that the DLIMID
can be represented as a 2TLIMID T = (L0,Lt)
and ∆ can be expressed as a pair (∆0,∆t), such
that ∆0 is the strategy at t = 0 and ∆t is a
stationary strategy at t ∈ 1 : ∞. Note that the

SPU(T ,∆0,ǫ):

∆ = ∆0, euMax = Eǫ
∆0

(U).
repeat

euMaxOld = euMax
for j = 1 to n do

for all policies p′j for ∆ at Dj do

∆′ = p′j ∗ ∆
if Eǫ

∆′(U) > euMax + ǫ then

∆ = ∆′ and euMax = Eǫ
∆′(U)

end if

end for

end for

until euMax = euMaxOld
return ∆

Figure 3: Single policy updating for 2TLIMIDs.

optimal strategy is deterministic and stationary
for infinite-horizon and fully observable Markov
decision processes (Ross, 1983). In the partially
observable case, we can only expect to find ap-
proximations to the optimal strategy by using
memory variables that represent part of the ob-
servational history (Meuleau et al., 1999).

We proceed by converting (L0,Lt) into
(B0,Bt) with B0 = B(L0,∆

0) and Bt =
B(Lt,∆

t), where (B0,Bt) is known as a two-
stage temporal Bayes net (Dean and Kanazawa,
1989). We use inference algorithms that oper-
ate on (B0,Bt) in order to compute an approx-
imation of the expected utility. In our work,
we have used the interface algorithm (Murphy,
2002), for which it holds that the space and time
taken to compute each P (Xt | Xt−1) does not
depend on the number of time-slices. The ap-
proximation Eǫ

∆(U) is made using a finite num-
ber of time-slices k, where k is such that γk < ǫ

with ǫ > 0. The discount factor γ ensures that
limt→∞ E∆(U) = 0. Let ∆0 = ∆0 ∪ ∆t be
the initial strategy with ∆0 = {p1, . . . , pm} and
∆t = {pm+1, . . . , pn}, where m is the number of
decision variables in L0 and n−m is the number
of decision variables in Lt. Following (Lauritzen
and Nilsson, 2001), we define p′j ∗∆ as the strat-
egy obtained by replacing pj with p′j in ∆. SPU
based on a 2TLIMID T with initial strategy ∆0

is then defined by the algorithm in Fig. 3.

3.2 Single Rule Updating

An obstacle for the use of SPU for strategy
improvement is the fact that if the state-space
Ωπ(D) for informational predecessors π(D) of a
decision variable D becomes large, then it be-
comes impossible in practice to iterate over all
possible policies for D. The number of policies
that needs to be evaluated at each decision vari-
able D grows as kmr

, with k = |ΩD|, assuming
that |ΩVj

| = m for all Vj ∈ π(D), and r is the
number of informational predecessors of D. For
example, looking back for two time-slices within
our model leads to 2 policies for L0 and 227 poli-
cies for T 0, L1 and T 1, which is computationally
infeasible, even for this small example.

For this reason, we introduce a hill-climbing
search called single rule updating (SRU) that
is inspired upon single policy updating. A de-
terministic policy can be viewed as a mapping
pj : Ωπ(Dt

j
) → ΩDt

j
, describing for each config-

uration x ∈ Ωπ(Dt
j
) an action a ∈ ΩDt

j
. We

call (x, a) ∈ pj a decision rule. Instead of ex-
haustively searching over all possible policies for
each decision variable, we try to increase the
expected utility by local changes to the deci-
sion rules within the policy. I.e., at each step
we change one decision-rule within the policy,
accepting the change when the expected utility
increases. We use (x, a′) ∗ pj to denote the re-
placement of (x, a) by (x, a′) in pj . Similar to
SPU, we keep iterating until there is no further
increase in the expected utility (Fig. 4).

SRU decreases the number of policies that
need to be evaluated in each local cycle for a
decision variable to kmr, where notation is as
before. For our example, we only need to eval-
uate 2 policies for L0 and 54 policies for T 0,
L1 and T 1 in each local cycle, albeit at the ex-
pense of replacing the exhaustive search by a
hill-climbing strategy, increasing the risk of end-
ing up in local maxima, and having to run local
cycles until convergence.

3.3 Simulated Annealing

SPU and SRU both find local maximum strate-
gies, which may not be the optimal strategy ∆∗.
To see this, consider the proposed strategy for

SRU(T ,∆0,ǫ):

∆ = ∆0, euMax = Eǫ
∆0

(U)
repeat

euMaxOld = euMax
for j = 1 to n do

repeat

euMaxLocal = euMax
for all configurations x ∈ Ωπ(Dj) do

for all actions a′ ∈ ΩDj
do

p′j = (x, a′) ∗ pj

∆′ = p′j ∗ ∆
if Eǫ

∆′(U) > euMax + ǫ then

∆ = ∆′ and euMax = Eǫ
∆′(U)

end if

end for

end for

until euMax = euMaxLocal
end for

until euMax = euMaxOld
return ∆

Figure 4: Single rule updating for 2TLIMIDs.

our running example (Fig. 2) to never test and
always treat. Suppose this is our initial strategy
∆0 for either the SPU or SRU algorithm. Try-
ing to improve the policy for the laboratory test
L we find that performing the test will only de-
crease the expected utility since the test has no
informational value (we always treat) but does
have an associated cost. Conversely, trying to
improve the policy for treatment we find that
the test is never performed and therefore it is
more safe to always treat. Hence, SPU and SRU
will stop after one cycle, returning the proposed
strategy as the local optimal strategy.

In order to improve upon the strategies found
by SRU, we resort to simulated annealing (SA),
which is a heuristic search method that tries
to avoid getting trapped into local maximum
solutions that are found by hill-climbing tech-
niques such as SRU (Kirkpatrick et al., 1983).
SA chooses candidate solutions by looking at
neighbors of the current solution as defined by
a neighborhood function. Local maxima are
avoided by sometimes accepting worse solutions
according to an acceptance function.

SA(T ,∆0,ǫ,τ0, T):

∆ = ∆0, t = 0, eu = Eǫ
∆(U)

repeat

select a random decision variable Dj

select a random decision rule (x, a) ∈ pj

select a random action a′ ∈ ΩDj
, a′ 6= a

p′j = (x, a′) ∗ pj

∆′ = p′j ∗ ∆
eu’ = Eǫ

∆′(U)
if θ ≤ P (a(∆′)=yes | eu+ ǫ, eu′, t) then

∆ = ∆′ and eu = eu′

end if

t = t + 1
until T (t) < τ0

return SRU(T ,∆, ǫ)

Figure 5: Simulated annealing for 2TLIMIDs.

In this paper, we have chosen the acceptance
function P (a(∆′) = yes | eu, eu′, t) equal to 1
if eu′ > eu and equal to exp(eu’−eu

T (t)) otherwise,

where a(∆′) stands for the acceptance of the
proposed strategy ∆′, eu’ = Eǫ

∆′(U), eu =
Eǫ

∆(U) for the current strategy ∆, and T is an
annealing schedule that is defined as T (t + 1) =
α · T (t) where T (0) = β with α < 1 and β > 0.

With respect to strategy finding in DLIMIDs,
we propose the simulated annealing scheme as
shown in Fig. 5, where θ is repeatedly chosen
uniformly at random between 0 and 1. Note
that after the annealing phase we apply SRU in
order to greedily find a local maximum solution.

4 Experimental Results

We have compared the solutions found by SRU
and SA to our running example based on twenty
randomly chosen initial strategies. Note that
SPU was not feasible due to the large number
of policies per decision variable. We have cho-
sen a discounting factor γ = 0.95 and a stop-
ping criterion ǫ = 0.01. After some initial ex-
periments we have chosen α = 0.995, β = 0.5
and tMin = 3.33 · 10−3 for the SA parame-
ters. In order to reduce computational load,
we assume that the parameters for P (T 0 | M0)
and P (T t | M t) are tied such that we need
only estimate three different policies for P (L0),

8

9

10

11

12

0 200 400 600 800 1000

Eǫ
∆(U)

cycle

Figure 6: Change in Eǫ
∆(U) for one run of SA.

The sudden increase at the end of the run is
caused by the subsequent application of SRU.

P (Lt | M t−1) and P (T 0 | M0) = P (T t | M t).

For the twenty experiments, SRU found
strategies with an average expected utility of
Eǫ

∆(U) = 11.23 with σ = 0.43. This required
the evaluation of 720 different strategies on av-
erage. SA found strategies with an average ex-
pected utility of Eǫ

∆(U) = 11.51 with σ = 0.14.
This required the evaluation of 1546 different
strategies on average. In 16 out of 20 exper-
iments, SA found strategies with higher ex-
pected utility than SRU. Furthermore, due to
the random behavior of the algorithm it avoids
the local maximum policies found by SRU. For
instance, SRU finds a strategy with expected
utility 10.29 three out of twenty times, which
is equal to the expected utility of the proposed
strategy to always treat and never test. The
best strategy was found by simulated anneal-
ing and has an expected utility of 11.67. The
subsequent values of Eǫ

∆(U), found during that
experiment, are shown in Fig. 6.

The found strategy can be represented by a
policy graph (Meuleau et al., 1999); a finite state
controller that depicts state transitions, where
states represent actions and transitions are in-
duced by observations. Figure 7 depicts the pol-
icy graph for the best found strategy. Starting
at the left arrow, each time slice constitutes a
test decision (circle) and a treatment decision
(double circle). Shaded circles stand for posi-
tive decisions (i.e., Lt = yes and T t = yes) and
clear circles stand for negative decisions (i.e.,
Lt = no and T t = no). If a test has two outgo-

Figure 7: Policy graph for the best strategy
found by simulated annealing.

ing arcs, then these stand for a negative finding
(dashed arc) and positive finding (solid arc) re-
spectively. Most of the time, the policy graph
associates a negative test result with no treat-
ment and a positive test result with treatment.

5 Conclusion

In this paper we have demonstrated that reason-
able strategies can be found for infinite-horizon
DLIMIDs by means of SRU. Although compu-
tationally more expensive, SA considerably im-
proves the found strategies by avoiding local
maxima. Both SRU and SA do not suffer from
the intractability of SPU when the number of
informational predecessors increases. The ap-
proach does require that good strategies can be
found using a limited amount of memory, since
otherwise, found strategies will fail to approx-
imate the optimal strategy. This requirement
should hold especially between time-slices, since
the state-space of memory variables can become
prohibitively large when a large part of the ob-
served history is required for optimal decision-
making. Although this restricts the types of
decision problems that can be managed, DLIM-
IDs, constructed from a 2TLIMID, allow the
representation of large, or even infinite-horizon
decision problems, something which standard

influence diagrams cannot manage in principle.
Hence, 2TLIMIDs are particularly useful in the
case of problems that cannot be properly ap-
proximated by a short number of time slices.

References

G.F. Cooper. 1988. A method for using belief net-
works as influence diagrams. In Proceedings of the
4th Workshop on Uncertainty in AI, pages 55–63,
University of Minnesota, Minneapolis.

R. Cowell, A. P. Dawid, S. L. Lauritzen, and
D. Spiegelhalter. 1999. Probabilistic Networks
and Expert Systems. Springer.

T. Dean and K. Kanazawa. 1989. A model for rea-
soning about persistence and causation. Compu-
tational Intelligence, 5(3):142–150.

R.A. Howard and J.E. Matheson. 1984. Influence di-
agrams. In R.A. Howard and J.E. Matheson, edi-
tors, Readings in the Principles and Applications
of Decision Analysis. Strategic Decisions Group,
Menlo Park, CA.

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi.
1983. Optimization by simulated annealing. Sci-
ence, 220:671–680.

S.L. Lauritzen and D. Nilsson. 2001. Representing
and solving decision problems with limited infor-
mation. Management Science, 47(9):1235–1251.

N. Meuleau, K.-E. Kim, L.P. Kaelbling, and A.R.
Cassandra. 1999. Solving POMDPs by search-
ing the space of finite policies. In Proceedings of
the 15th Conference on Uncertainty in Artificial
Intelligence, pages 417–426, Stockholm, Sweden.

K.P. Murphy. 2002. Dynamic Bayesian Networks.
Ph.D. thesis, UC Berkely.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann Publishers, 2 edition.

S. Ross. 1983. Introduction to Stochastic Dynamic
Programming. Academic Press, New York.

M.A.J. van Gerven, F.J. Dı́ez, B.G. Taal, and P.J.F.
Lucas. 2006. Prognosis of high-grade carcinoid
tumor patients using dynamic limited-memory in-
fluence diagrams. In Intelligent Data Analysis in
bioMedicine and Pharmacology (IDAMAP) 2006.
Accepted for publication.

S.D. Whitehead and D.H. Ballard. 1991. Learning
to perceive and act by trial and error. Machine
Learning, 7:45–83.

