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Singular Perturbation Based Solution to Optimal
Microalgal Growth Problem and Its
Infinite Time Horizon Analysis

Sergej éelikovsky, gtépén Papacek,
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Abstract—The problem of the optimal microalgal growth of the so-called
photosynthetic factory (PSF) is considered here. The objective is to max-
imize the photosynthetic production rate (the specific growth rate of mi-
croalgae) by manipulating the irradiance. Using the singular perturbation
based reduction, an analytical solution of such an optimal control problem
is obtained and its infinite horizon analysis shows that the optimal solution
on large time intervals tends to the optimal steady state of PSF. This is a
mathematical confirmation of the hypothesis often mentioned in biotech-
nological literature.

Index Terms—Photosynthetic factory (PSF).

I. INTRODUCTION

The problem of the optimal control of bioreactors operating under
the high irradiance belongs to intensively studied topics in both
biotechnology and mathematical biology literature, see [7] and refer-
ences within there. It is based on the photosynthetic microorganisms
growth modelling reflecting the coupling between photosynthesis and
irradiance (being a controlled input), resulting in the steady-state light
response curve (so-called P-I curve), which represents the microbial
kinetics, see e.g. Monod or Haldane type kinetics [14] and also survey
introduction in [10].

Nevertheless, in order to study an optimal control of algae produc-
tion, the dynamic model should be developed. The model considered
later on is the lumped parameter model for photosynthesis and photoin-
hibition, the so-called model of photosynthetic factory—PSF model
[2], [3], [5], [9], [17]. The main difficulty in considering the dynamic
behavior of the photosynthetic processes consists in their different time
scales. While the characteristic time of microalgal growth (e.g. dou-
bling time) is in order of hours, light and dark reactions occur in mil-
liseconds and photoinhibition in minutes, for more detail see e.g. [13].

The purpose of this technical note is to analyze the two time scales
phenomena and to use this analysis to compute explicit optimal con-
trol law to maximize algal biomass production. Namely, the reduc-
tion of the dynamical system to the slow manifold will be developed
and then the corresponding less dimensional optimal control problem
will be solved analytically. As a matter of fact, this analytical solu-
tion being applied to the original non-reduced system even generates
better values of the performance index than the approximation obtained
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via quite long numerical computations using the gradient algorithm,
thereby confirming viability of the above reduction to the less dimen-
sional problem. Moreover, further analysis of that analytical solution
will give mathematical confirmation to the well-known biotechnolog-
ical experimental observation and the paradigm that for large time in-
tervals optimal solutions tend to be constant.

This technical note is organized as follows. Section II presents the
dynamic model of the microalgal growth in detail, derives its reduction
to the slow manifold and carefully analyzes the corresponding approx-
imation precision. Section III applies Pontryagin’s maximum principle
to derive analytically the optimal irradiance to maximize the average
production rate. It also formulates and proves some biotechnological
relevant properties of the optimal solution. Conclusions are summa-
rized in the final section.

II. DYNAMICAL MODEL OF MICROALGAL
GROWTH AND ITS REDUCTION

Microalgal growth is modelled based on the following experimental
observations: (i) the steady state kinetics is of Haldane type [8]; (ii)
the microalgal culture in suspension has the so-called light integration
property [8], [15], i.e. as the light/dark cycle frequency, [4], is going to
infinity, the value of the resulting production rate (e.g. oxygen evolution
rate) goes to a certain limit value, which depends on the average irra-
diance only [9]. These features are best comprised by the dynamical
model, called as the model of photosynthetic factory (PSF), which
has been recently studied in the biotechnological literature [2], [3], [5],
[17].

PSF is a phenomenological model depicted schematically at Fig. 1.
Here, every algae cell is assumed to be in the exactly one of the fol-
lowing three states: the activated one, the inhibited one and the resting
one. These states are denoted A, B, R, respectively. Further, under
the irradiance each algae cell with certain probabilities either stays in
its current state or is transformed into one of the remaining states. It
is assumed that transition rates depend on intensity of the irradiance
in affine way. As a consequence, the PSF model can be mathemati-
cally described by the well-known concept from control theory—the
so-called bilinear controlled dynamical system, cf. [1] and references
within there. To do so, the state variables x4, 2, xp are introduced
as probabilities of the corresponding states. Obviously, as xr 4+ x4 +
xp = 1 by definition, it is sufficient to study any couple of these vari-
ables and transition between them. The states x4 and x5, unlike xR,
can be directly measured and therefore they are usually preferred. This
leads to the following controlled bilinear system with two dimensional
state and one dimensional input:

Sl
] I g T A

where the constants o« = 1.935 x 107* pE™'m?, v = 1.460 x
107 s7 3 = 5785 x 1077 uE~'m?, 6§ = 4.796 x 107* 57!
are taken from [12], [17] and u(¢) is a known piecewise smooth scalar
input representing the irradiance in pEm™?s™!, where uF stands for
micro Einstein being 10™° of the energy of 1 mol of fotons. This is
common irradiance unit used for photosynthesis, as its rate depends on
number of involved photons rather then on the precise energy. Energy
of one nE depends on the wave length via the well known relation in-
cluding Planck constant, for the 400 nm light 1 pE & 0.27 J. Recall,
that the state variables =4 g are dimensionless. Therefore, a straight-
forward physical dimension analysis shows that «, 5, vyu, du are all in
s71, i.e. both sides of the model (1) are in s~ * and all the above intro-
duced units and equations are physically consistent.

The desired biotechnological production is proportional to the
so-called specific growth rate, [2], [17], being, in turn, proportional to
the number of transitions from the activated to the resting state, i.e.
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Fig. 1. Scheme of states and transition rates of the photosynthetic fac-
tory—Eilers and Peeters PSF model.

~x4(t). More precisely, the specific growth rate measurable as the
rate of the photosynthetic oxygen production is by [17] proportional
to the integral average of the activated state. As a consequence, the
performance index to be maximized is taken as the so-called average
specific growth rate on a given fixed time interval [to, t] C RT U {0}
defined as follows:

tr
J = ky(ty —to)™! /,rA(t)df. )

to

Here x is yet another dimensionless PSF model parameter which obvi-
ously does not influence the optimal solution. As a matter of fact, the
average specific growth rate, measured in s~*, characterizes the effi-
ciency of the algae production process, nevertheless, its optimization
on the fixed time interval is equivalent to optimizing the integral of the
activated state.

For the constant input signal v > 0 the system of differential equa-
tion (1) is linear and its matrix has two distinct negative eigenvalues.
Therefore, any solution of (1) with constant v > 0 globally converges
to the following steady state solution depending on that constant w > 0:

TAgs = aéu)\}l)\gl, Tpes = afu’ Ap )\5 3)
where A\p s < 0 are eigenvalues of the corresponding constant matrix
on the right hand side of (1). As already noted, the performance index to
be maximized in the sequel is based on quantity defined in (2). If only
constant irradiance is considered and steady state transition phenomena
are neglected, an immediate idea is to maximize the steady state value
2 44 With respect to u. Straightforward computations [9], [12] show
that such a maximal value exists and is achieved for the unique input
denoted as wopt,, and given as follows:

71/251/2(}_1/2%3_‘/2, = uUopt,, - “)

Uoptss =

In the sequel, with a slight abuse of notation, the above wop¢,, Will
be called as the constant optimal input or control. The variable «”*
introduced in (4) is a new normalized input variable used in the sequel,
with such an input variable the optimal constant input is simply equal
to 1.

Next, let us prove that the above model (1) is not contradictory from
a biological point of view. Namely, by their biological nature the state
variables x 4, 5 are nonnegative and their sum should not exceed one
as alsoxp = 1—x 4 —xp is nonnegative. Therefore, it is vital to prove
the following

Proposition 2.1: Denote

Al = {[T],J?Q]T € H2|,771 +aoe <121 > 0,22 > 0}. 5)

Then, A' is forward invariant with respect to all trajectories of (1) gen-
erated by any positive measurable input function w(t).
Proof: Analyzing the right hand side of (1) gives easily that
1) Forza € (0,1),25 = 0,and by (1) &5 = ufza > 0.
2) Foraxp € (0,1),24 = 0,and by (1) i4 = ua(l —2p) > 0.
3) Forza € (0,1),z € (0,1), 24 + x5 = 1,and by (1) 24 +
it = —vyara — bxp < 0.
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4) Forza = g = 0onehas @4 = au, g = 0.

5) Forzy =0,z = lonehasty = 0,2 = —6.

6) Forza =1,zp =0onehas &4 = — (v + fBu), e = [u.
Therefore, the vector field of (1) does not point outward A® at any point
of its boundary. O

Summarizing, the above described PSF model is a convenient mod-
elling framework for the lumped parameter model of the microalgal
growth satisfying two basic properties (i) and (ii) formulated at the be-
ginning of the current section. The latter property (ii) is mathematically
proved in [9] based on the earlier result on bilinear systems in [1]. For
more details, see [9], [10], [12] and further references within there.

To facilitate further analysis let us rewrite the model (1), (2) intro-
ducing a more convenient parametrization. Namely, consider new pa-

rameters ¢;, ¢ = 1,...,95, defined as
ad ab
, g3 = Ky —,
of =4/ 5B Ny
¢4 '=aq1, ¢ 1= f/a (6)

together with the earlier introduced dimensionless irradiance u* :=
w/Uopt,, giving the re-parameterized model

o] 9 R i )
ga LB - 0 «72(1(7-5H75) i
[A4+gs) 1] [za u”
R 1l S Y B
tr
J=qz<J3(1+q5)(tf—to)*l/a:A(t)dt. ®)

Notice that ¢, units are those of irradiance (uE m ™2 s 1), g2, g5 are

dimensionless, ¢3, ¢4 are in s~'. The reason to introduce such a re-pa-
rameterization is that the role of each new parameter is now much more
clearly visible. Namely, parameters ¢, g2, ¢3 correspond to the steady
state properties of the PSF, while ¢1 := wu,p¢,, by definition. Fur-
thermore, ¢4 influences the overall dynamics through a constant time
scaling only, while g5 is a small parameter quantifying the separation
between the fast and slow dynamic; ¢5 ~ 10~*. More specifically,
based on (1) and [17], the following values of the PSF re-parameterized
model parameters were calculated and further tuned via special iden-
tification method in [12] for the microalga Porphyridium sp.: q1 :=
250.106 pEm™2s71, g2 = 0.301591, ¢3 := 0.000176498 s,
q4 = 0.483955 5", g5 := 0.000298966. Finally, the expressions
for the steady states depending on constant inputs given by (3) have
after the above re-parameterization the following simpler form:

XBes =y*? (u*'2 +u /g + 1)7
Cass =wnes (qa(1+gs)u™) ", )

In particular, the constant input u*
among all constant ™ > 0.

Now, let us derive one dimensional reduction of the PSF model. The
coefficients of the right hand side of the second row in (7) are by several
orders smaller than those of the first one due to the presence of the small
parameter g5 ~ 10~ *. So, the idea is to replace the first much faster
equation by its right hand side equal to zero, then to express x4 from
it and to substitute the resulting expression into the second equation in
(7). This gives the following reduced model (the upper index “S” aims
to avoid confusion with notation for the non-reduced model (7)):

= 1 maximizes the value of = 4,

wt (1 =23
w4 = #g (10)
(w* +q2)(1+g5)
At @(l4gs)  (T+gs)(u" +q2)

The important question is how well this reduced model approximates
the original non-reduced one. Apart from the system parameters, the
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approximation is obviously influenced by its time varying input, see
[16] for general treatment of the related issues. The subsequent propo-
sition and its corollary provide specific and reasonable estimates of
the corresponding approximation precision based on the efficient ex-
ploiting the particular properties of (7), (10), and (11).

Proposition 2.2: Assume that (¢, 2°),t € T := [to, t1], is the so-
lution of (7) generated by the initial condition 2° (to) = (2%, ;v%)T €
A defined by (5) and a given positive bounded measurable function
u*(t), t € Z. Further, let for U, € [0,1],” > 0,D > 0, > 0 and
vt el

u* (1) 0 C1—a%

'u*(t)+tJ2 24" = Uap 14 g5
t—to > T() = (D +1)(q24s) "

x log (a_lfx'(P — K)) ,

K = /2% + 645 + 5,

K = max {D + q5, ¢

_Dvap SD~

= »

(12)

D 2
%} (13)
2

Suppose ¢2,3,4,5 > 0, ¢2 < 1. Then there exists the solution ;L'S(t,.f'o),
&% = (25, 2%) " of (10), (11) such that for all = > 0 and P > K it
holds

Moreover, if P < K then it holds ||z (¢, #°) — x(t,2°)|| < K (K +
D)Vt > to.

Proof: First, recall that by Proposition 2.1 the set A" is forward
invariant, i.e. in the sequel we may assume that any trajectory belongs
for all t € T to A'. Further, denote

25 (4, 70) — ,r(f,,ro)H <K(K+D)4+e, Vit>to+T(2). (14)

s s
€1 =TA — 2T, e0=2Tp —TH,
(1—ap)u” ap _ 1l—uap
e1=xa— —F—— P=ws-U, 15
T et ) (U gs) . Pl4gq (1>
then by (10) and by «p € [0, 1] one has
o me - Y
T T ) (T4 gs)
1—2zgr U
— P = Jap — Ller — 57| < D. 16
€1 — € 1_’_(15{ P u*-{—qz]"ﬁ 6’ (16)

To estimate €;(t), ¢ € T, notice that by the first row in (7) it holds
a4 =—(u" 4+ ¢q2)qa(l + g5)e1, i.e. by (15), (16)

ap _ Uap®B (0" 4 q2)q4

car — _
Vol4g (I4gs)
1—ap [.. u*
ap 7 —
x |:El + 14 g5 |:Lap u*-l—qz”’

€7 = —(u" 4+ ¢2)qa(1 4+ g5)
1-zg u”
ap ch’/ —
X |:F1 + 1+q5 |: P ’LL*-{—(]2:|:|
zp —u qra(l+gs)
g2(1+ ¢5)?

- Lrap q44s

where the last equality is by the second row of (7). Summarizing, it
holds

B = = (b aa(l ) (@ £ R(). ()
rp —u"gra(l+gs)
k(t) :=q5U,
®) =g Pga(ur 4+ q2) (14 ¢5)?
1—.[’5 - u”*
- P NUyy — —— | 18
+1+q5|:p u*+q2] (18)
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Moreover, the following estimate holds:

|h(2‘)| < K V[IA,IB]T S Al 19)

where A' is given by (5) and & by (13). Actually, () depends lin-
early on [z, 25| " and therefore it is sufficient to check the estimate
(19) on the vertices of A':
1) for [z, 25]" =1[0,0]" it holds that |«x(¢)| < D;
2) for [za,x5]" = [1,0]7 it holds that |x(t)| < D + ¢sU., <
D + ¢s,as Uy € [0.1];
3) for [za,z5]" = [0,1]" it holds that |s(t)| < (Uapgs/g2(u* +
12)) < ¢5(Uap(L = Uap + D) /a3) < a5[(D + 1) /242]*.
In 3) we used that (v*/(u* + q2)) > Usp — D = u* >(q2(Uap —
D)/(1 =Uap + D)) = (1/(u" + ¢2)) <((1 = Uap + D)/¢z) and
s(D4+1—5) < (D+1)%/4,Vs € R.To finish the estimating of €{” (#),
(17) and (19) imply that the following inequalities hold simultaneously:
P < — (0" + 2)qa(14g5) (6" = K),
&r > = (u" +q2)qa(1+¢s) (" + K). (20)
By integration and by Bellman-Gronwall lemma one has (note that
K > 0 by definition)

e (1) <K + a(t) (677 (to) = K) < K + (P — K)a(t),
t
aft) := exp —/(qz +u"(s5))qa(l+ ¢5)ds | € (0,1],
to

e (t) > — K +aft) (e]"(to) + K) > =K — (P — K)a(t)
= —€e/P(t) <K+ (P - K)at).

By definition of ejp in (15) and definition of P in (12) it holds
Viwa(to), xn(to)]’ € A

€77 ()] < K + (P — K)a(t). @21
As a consequence, V= > 0 and V[za(to), z5 (to)]" € A' it obviously
holds that |¢{? ()| < K + K ' if

/(qg +u”"(5)) qa(1 + g5)ds > log (Sflff(P - F)) .

Using already derived estimate (1/(u* 4+ ¢2)) < ((1 = Uap + D) /q2)
together with the obvious inequality (1/(1 + ¢5)) < 1 one has easily
that [} (1)| < K + =K' if

t>to+ (1 —Uap+ D)(gags)” " log (5—11?(13 - F)) . Q)

Recalling the relation between € and €“? in (16) and K , T'(¢) given by
(12), (13), one has by (22)

ler(t)| < K+ D+=/K, Vt>to+T(s). (23)
So far we have shown that any trajectory of (7) gets after sufficiently
large time arbitrarily close to K -proximity of the slow manifold. To
finish the proof, one should show that there is a solution of (10), (11),
which is sufficiently closed to that trajectory of (7) for all times ¢ >
T'(2).To do so, subtract (10), (11) and (7) to obtain after some straight-

forward computations and by (23) that V¢ > to + T'(2)
g2 +u" 4 g2 (u”)?
*e(+ ¢)(u + )t
lei] < K+ D+ =
K

. * i
€2 = U (445 |€1 — €

Now, one can define the solution z° (¢, #°) of (10), (11) involved in
(14): this is simply the solution of (10), (11) satisfying ez (to+7T(2)) =
0, where ey is given by (15). Notice, that both the original non-re-
duced system and its restriction to the slow manifold obviously satisfy
for any bounded measurable input the conditions for the existence and
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uniqueness of solutions for all ¢ € R. As a consequence, the condition
es(to + T'(2)) = 0 defines uniquely and globally in time the solution
of (10), (11), thereby actually defining #° required by the proposition
claim. With such a selection of initial condition for z° (and conse-
quently for e2) it is not difficult to see that

lea ()| < <F—|— D+ i,:) max {qz(l +gs)(u” + q;?u
K ) uwr€lU,U] g2 + u* + ga(u*)?

§(1+q5)<F+D+%), V> to + T(c)
%

as g2 € (0,1) by assumption, i.e. ga(u*)> + q3u* < qo + u* +
a2 u*)Q. To conclude the proof, note that, in addition to the estimate
just obtained, by (23), (15) it holds V¢ > to + T'(2)
G p— e2(t)u
(u*+q2)(1+g5)

<(2+q5) <F+D+%>.
i

o1 (1] =

Finally, notice, that if P < ¥ then following (21) one can in all
estimates replace ¢ by 0 and 7'(¢) by 0. Now, computations using
le]l = v/€2 + e3 complete the proof. O

Corollary 2.3: Suppose that all assumptions and notation of Propo-
sition 2.2 hold except that the constant Uy, is replaced by a piecewise
continuous function Uy, (#) € [0, 1]Vt € T such that its jumps at dis-
continuities have absolute value less than £ > 0 and time segments
between jumps are longer than AT := (D +1)(g2q4) "' log(2). Then
for P > K itholds Vt > to + T(¢)

27 (¢, ) — a(t,2)

‘ < K(K+ D+2E) +-=. (24)
Moreover, if P < K then it holds ||z (¢, #°) — (¢, 2°)|| < K(K +
D+ 2E),¥t > to.

Proof: Lett' < ... < t* be the jumps time moments, where
t',t* € [to,t]. The estimate (21) is in this case replaced by (here
B(s) == (g2 + u™(s))qa(1+ ¢5) and recall that t*+1 — ' > AT)

t

O] <T + (P = T)e o

+ E—1 Lk
T e D L

B(s)ds

<K+ (P-K)e Joy #e2ae

. k=1
+ Ee ™ ft"‘ Als)ds Z 27"
=0

t
<SE+(P-T)e Jo?"

+2FE
since Vi = 0,1,...,k — 1 it holds f;’:_i B(s)ds > {AT(D +
1) g2qa = ilog(2). Roughly saying, each jump causes additional
error in |e{"”| less than E which decays before the next jump at least
by one half, so in total, even infinite many jumps cause an additional
increase of |€{?(¢)| of no more than 2F = (1 + 1/2 + 1/4...)F.
Now, one can proceed with the latter estimate in the same way as in
the rest of the proof of Proposition 2.2 following after (21). O
Remark 2.4: Corollary 2.3 shows that the singular perturbation
approximates quite well also the systems with discontinuous or
even only measurable inputs, provided they are approximated by
piecewise constant functions with reasonable jumps and reasonable
times between them. The minimal time between jumps AT can be
eNstimated for given values of ¢z, ¢4 as AT =~ (D + 1)4.8 s, while
K = 5, K = max{D + 0.003,0.0003}. Important observation is the
following: the approximation is better if function w™*(¢)/(w*(¢) + ¢2)
is better approximated in the above sense, not the input «” (¢) itself.
Fig. 2 shows that «*(¢)/(u*(t) + ¢2) becomes quickly saturated
for u* = 1, i.e. the approximation condition of the above Corollary
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g e

Fig. 2. Saturated influence of the input on the approximation precision. Left:
the function w/(u + g-), right: its derivative.

2.3 is easier to fulfill, especially recalling the fact that v* = 1 is
constant optimal control and the nonconstant one is by experiments
expected to be > 1. Finally, the minimal time between jumps is indeed
very small, as typical time segments where optimality is investigated
are of order 10° s (i.e., several days). Moreover, there is an obvious
relation between AT and D, E: e.g., when approximating a fixed
input with bounded variation, smaller AT means also smaller D, E.
Summarizing, the singular perturbation based reduction is acceptable
for reasonable slowly changing inputs and might be used to find some
nonconstant optimal control strategies later on.

III. OPTIMAL CONTROL—MAXIMUM PRINCIPLE
FOR REDUCED SYSTEM

In this section, the optimal control problem for the system (11) with
the performance index obtained by substituting =% from (10) for 4
in (8), is considered and solved analytically. Recall that the initial state
is assumed to be given and fixed, the final state is free and time in-
terval is fixed. To make the further exposition more standard, consider
without any loss of generality to = 0, ¢; = 7', the minimization of
the integral in (8) with the minus sign added and denote =1 := ag,
w := «*. Summarizing, for the given fixed 7 > 0,U > 0, 2" e R?,
the following optimal control problem is to be solved: find measurable
on [0, T function u(t) such that:

T

7= /(Tl - 1)’11,(1‘/)%(” — min, u(t) € [0, U], 25
0
K 1—x)u? |
= — h + ( ’LL+1I)1 K, 7'1(0):7”(1) €[0,1],
K :=qags(14¢5)"" Li=¢o (26)

First, notice that in (25), (26) it always holds x; (t) € [0,1],V¢ > 0.
To solve this problem, the Pontryagin Maximum Principle (PMP) [11],
formulated for the interested reader’s convenience in a more particular
and simpler form as Proposition 1 of [10], will be applied. The Hamil-
tonian H and the adjoint system for (25), (26) are

_ u(,rl—l) T (1_1.1),"/2 _ 1
= . —|—LL1I&( 3 Ak 27)
. u K u
I | =+ C ), =0
U1 u+L+“(L+“u+Lh>“(T) e
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[0, T], solves the optimal control problem
(25), (26), then by PMP it holds for all + € [0,7] that
H(n (), u”(t),2(t)) = maxyep,u) H(¥i(t),u,2(t))= 0, for
some solution of (28) ¥1(t) # 0, ie. ¢(v’) = max,cp,u] d(u),
o(u) = u(l—z1)(1+¢1 Ku)/(u+ L), where 1 (¢) is the uniquely
given solution of (28). To determine «°, compute ¢ (u) to obtain
Oo(u)  1-—
du  (u+ L)Z

Suppose u°(t), t €

(K u? + 2K Lpru + L). 29)

First of all, it is obvious from (25), (26) that z () < 1¥¢ > 0. As the
co-state 1 is given by (28), it is easy to see that 1 (¢) < OVt < T.
Actually, assuming v (+') > 0 for some #' < 7T one has by (recall that
K,L>0)(u/(u+L))>0,(K/L)+u(u/(u+L))K > 0,Vu €
[0,U], that ¢ (t) > 0,¥t > ¢, ie. ¢ (t) > 0,¥t > ¢ what con-
tradicts to the condition ¢ (I") = 0. From the same equation one can
see that ¢y = 0 on some [t', T if and only if u(t) = 0,Vt € [t', T].
Nevertheless, on such a time interval the derivative in (29) equals to
L > 0, i.e. maximum of ¢ can not be achieved at v = 0. There-
fore, only the case ¥1(¢) < 0Vé < T is possible. Now, using (29) for
Y1 < 0and 1 € [0, 1] (cf. remark right after (26)) one can see that
&' (u) > 0,u € [0,4], ¢'(a) = 0,6 (u) < 0,u € [u,o0], where
W(vn) = —L + \/I? = (Ky1)~.

Summarizing, the only possible optimal control «°(¢) is given by the
following formula:

'ua(t):og('wl(t)),a('¢ll):1nm{—L+1/L2 ]’L/l U} (30)

where 1 (t) is the solution of (28) with u = a(t1).

As a matter of fact, to obtain the optimal control (30) one has first to
solve a nonlinear differential equation, i.e. (28) with v = a(¢() and
then substitute this solution to the above «(-). Such a nonlinear equa-
tion obviously does not have the solution in the closed form and may
be solved only numerically. Nevertheless, all crucial qualitative prop-
erties of this solution can be obtained by rigorous theoretical analysis
of that nonlinear equation (28) with u = (%1 ). First, the full qualita-
tive description of the above optimal control is formulated and proved
as the following

Proposition 3.1: Optimal control given in (30) is strictly increasing
on time interval [0, T —T"*'] while on [T —T°"*, T] itholds u(t) = U.
Moreover, the length 7°“* of the interval where the optimal control is
saturated does not depend on 7', namely, it equals to

Lu+L) U*(U +2L)
KEU+L+LU?) 2\ -1)U+1I)

Proof: The first part of the proposition follows from the fact that
the right hand side of the adjoint equation is always strictly positive,
so that i1 (t) < 0Vt < T and strictly increases, while in (30) «°
depends on ¢ in strictly increasing way, unless the saturation occurs.

,Tsat _

To obtain the formula for T5“*, consider in (30) the costate v;“* where
—L+\/L2 — (K¢3*H)™' =T, ie.
-L

rsat

VYT e 31

. KU(U + 2L) @D
As o (T) = 0, (T = Y3*t and W (t) s
strictly  increasing, T°*' should obviously satisfy the fol-
lowing relation 0 = CK((I/LH(UZ/(U*L))JT“”'(wfat +

/lvsat

[P (e KO/ /W (7 4 L))ds), Qe after
integration, re-grouping and cancelling some terms one has that
(el /LW /DD RN (72 (142 ) (U2 =1)(U+L))) = 0,
giving easily the above formula for 77", O

Corollary 3.2: The optimal control does not depend on initial state
of the plant.

Proof: It is obvious from the corresponding formulas defining
the optimal control. Notice, that the optimal value of the performance
index depends on initial condition, nevertheless, it is achieved with the
same input, regardless of the initial condition. O
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Fig. 3. SP based optimal control in uE m™2s~"; time in s.

The proposition just proved and its corollary show that the optimal
control course depends only on the input saturation and does not de-
pend on initial condition 21 (0). Besides, for the same U and two dif-
ferent T > T the optimal control on [0, 77] coincides on subinterval
[T\ — T»,T:] with the optimal control on interval [0, T2]. Moreover,
for U > 1 with increasing 7', the optimal control converges to the con-
stant input v = 1 known to maximize the performance index within
constant inputs. More precisely, it holds the following

Proposition 3.3: Denote u%(t) the optimal control (30) corre-
sponding to the fixed time interval [0, 7] and assume U > 1. Then
Ve, T > 0,3T(e,T) > 0: |""OT(6,T)(7‘) — 1| < eVt €[0,T7.

Proof: Consider the following relations:

o o) (K Ka?(¢n)
Y1 = ( )+L+l% L+(I(L/)1)+L )
Y1(T) =0, 32)
a(4) = min {—L +I2— L(Ix’"un)*l,U} :
Ui = — L(K(1+2L)~", a()) =1 (33)
Straightforward, though laborious computations show that

a(—L/K(142L)) = min{/L?+2L+1-L. U} =min{l,U} =
1,1/ 4+ L)+ (—L/K(1 + 2L)((K/L) + (K/(1+ L)))= 0.
Therefore, 17 given by (33) is the equilibrium of (32) being, in turn,
the co-state (29) with « = «(4)1). Further

<0 foryi >

1!1) ) <K Ka?(yn) ) . )

Fur (54 =20 =0 foryf =

L L (1) L ) '

( 1)+ o(¥r) + >0 foryf < ¢
giving by the simple Lyapunov-like function V' = (¢ — 1*?)*/2 ar-

gument that the equilibrium (33) is actually the unique and globally
asymptotically stable one for the system (32) in reversed time. The
last fact obviously implies that VI' > 0,Ve > 03T = T(T',¢) :
| (t) — ¥F| < e,t € [0, T7], where ¢, () is the solution of (32). Now,
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~ TABLEI
VALUES OF (1/T) ([07 @ 4 (t)dt FOR (1) WITH DIFFERENT INPUTS

Tins | u=250uE Fig. 3 Fig. 4
10° 0.442 0.479 0.4796
10% 0.5830 0.5893 | 0.58927
10° 0.61951 0.62020 | 0.62013

the claim of the proposition to be proved follows by the second equality
of (33) and by (30). g

Remark 3.4: Proposition 3.3 shows rigorously that on large time in-
tervals the constant optimal control is closed to the general nonconstant
optimal control, moreover the latter one does not depend on the ini-
tial condition. This is actually the well-known and experimentally con-
firmed conjecture, yet until now without rigorous justification. Figs. 3,
4 and Table I nicely illustrate these properties. The analytical solution
based on the singular perturbation reduction is compared with the nu-
merical results based on the gradient numerical algorithm. Moreover,
Table I compares values of the performance index, showing that on a
short interval the “constant optimal control” is significantly worse than
both reduced and gradient based ones. Finally, notice, that on longer
time intervals the reduced-based optimal control is actually even better
than the one provided by gradient numerical algorithm. Here, for the
sake of a fair comparison, the reduced-based optimal control is applied
to the non-reduced system, so it is indeed better. The reason is the
well known phenomenon: the slow convergence of the gradient algo-
rithm when approximating the point of saturation, see also Figs. 3, 4,
where the notable difference can be seen around the saturation points.

IV. CONCLUSION

In this technical note, the problem of the optimal production rate
for algae photosynthetic factory has been analyzed. The main conclu-
sion here is that on sufficiently large time interval the optimal control

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 3, MARCH 2010

is closed to the constant one, which optimizes the appropriate com-
ponent of the system steady state. This fact has been mathematically
established both analytically based on singular perturbation reduction
and numerically via gradient optimization algorithm. In such a way,
this technical note provides the mathematical confirmation of the ex-
perimentally based hypothesis that has been frequently mentioned in
biotechnological literature.
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