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Compositional model theory serves as an alternative approach to multidimensional prob-
ability distribution representation and processing. Every compositional model over a finite
non-empty set of variables N is uniquely defined by its generating sequence – an ordered
set of low-dimensional probability distributions. A generating sequence structure induces
a system of conditional independence statements over N valid for every multidimensional
distribution represented by a compositional model with this structure.

The equivalence problem is how to characterise whether all independence statements
induced by structure P are induced by a second structure P

′ and vice versa. This problem
can be solved in several ways. A partial solution of the so-called direct characterisation of
an equivalence problem is represented here. We deduce and describe three properties of
equivalent structures necessary for equivalence of the respective structures. We call them
characteristic properties of classes of equivalent structures.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Theability to represent andprocessmultidimensionalprobabilitydistributions is anecessary condition for theapplication
of probabilistic methods in artificial intelligence. Among the most popular approaches are the methods based on graphical
Markov models, e.g., Bayesian networks. The compositional models (see [1] or [4] for example) represent an alternative
approach to graphical Markov models.

A Bayesian network may be defined as a multidimensional distribution factorising with respect to an acyclic directed
graph, or it may alternatively be defined by its graph and an appropriate system of low-dimensional conditional distribu-
tions. Similarly, a compositional model is defined as a multidimensional distribution assembled from a sequence of low-
dimensional unconditional distributions, with the aid of an operator of composition. We call the sequence of low-dimensional
distributions a generating sequence of the compositional model. The main advantage of both approaches lies in the fact that
low-dimensional distributions could easily be stored in a computermemory. However, computations on amultidimensional
distribution that is split into many pieces may be exceptionally complicated.

There are two main advantages to using compositional models as compared to Bayesian networks. First, compositional
models explicitly express some marginals, whose computation in a Bayesian network may be demanding. Secondly, no
auxiliary graphical tool, such as a directed acyclic graph, is required in compositional models.

As stated above, a compositional model is composed from an ordered system of low-dimensional distributions – the so-
called generating sequence. The binary operator of composition used during this process is basically a normalised product of
its parameters designed to create a probability distribution over the union of variables for which the input distributions are
defined (seeDefinition2.1).While themodel is put together, (un)conditional independencies are simultaneously introducedby
the structure of the generating sequence. For example, for a two-dimensionaldistributioncomposed fromtwoone-dimensional
ones, the respective variables are independent.
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For the sake of clarity, a structure of a compositional model (a structure of its generating sequence in particular) can be
visualised by a tool called a persegram, and one can read the induced independencies directly using this tool. We say that
every structure (or its corresponding persegram) induces an independence model – a list of (un)conditional independence
statements.

The equivalence problem is how to characterisewhether an independencemodel induced by one structure is identicalwith
an independence model induced by another structure, and vice versa. Structures inducing the same independence model
are said to be equivalent. One can find two different approaches to solve this problem in other probability models. First is
the so called direct characterisation, which is based on several characteristic structure properties sufficient to guarantee the
equivalence. Second, a group of local transformations preserving the independence model can be found and two structures
are equivalent if there is a sequence of these transformations from one to the next.

This paper puts forth two major contributions in this area. First, we derive two characteristic properties of equivalent
structures which can later be used for direct characterisation of an equivalence problem. The second contribution is presen-
tation of a very special subset of the relevant structure – the so called structure core. It results from a very new approach to
sets of variables, wherewe distinguishwhether the set is trivial or non-trivial in this structure. The structure core corresponds
to the so-called reduced persegram published in [6]. The local transformations preserving an induced independence model
(published in [7]) now seem to be a very logical consequence of these properties.

2. Notation

Throughout thepaper thesymbolNwilldenoteanon-emptyfinite setoffinite-valuedvariables. ThesymbolsK,U, V,W, Z
will be used for subsets of N. |U| will denote the number of elements in U, that is, its cardinality. Symbols u, v,w, x, y, z
denote variables as well as singletons {u}, {v}, {w}, {x}, {y}, {z}. Two set inclusion symbols are used thorough the paper,
namely⊂ and⊆. Whereas the symbol⊆ represents the usual (non-strict) case of inclusion, the symbol⊂ is used for strict
inclusion only. That means if U ⊂ V then V \ U 6= ∅.

All probability distributions of the variables from N will be denoted by Greek letters (usually π ); thus for K ⊆ N, we
consider a distribution π(K) which is defined on variables K . If we work with several distributions, we distinguish between
them by indices. For a probability distributionπ(K) and U ⊆ K we denote the respectivemarginal distributionπ(U) orπ↓U .

For a probability distribution π(N) and three disjoint subsets U, V, Z ⊆ N such that U 6= ∅ 6= V , we say that sets of
variables U and V are conditionally independent given Z in π (in symbol U⊥⊥V |Z[π ]) if

π↓U∪V∪Z(x) · π↓Z(x) = π↓U∪Z(x) · π↓V∪Z(x).

for all x ∈ ×j∈U∪V∪ZXj . Observe that, if Z = ∅, then the conditional independence coincides with unconditional indepen-
dence. The unconditional independence of variable sets U and V in π is denoted by U⊥⊥V[π ].

The keystone of Compositional Models is an operator of composition �. It is used to compose low-dimensional distrib-
utions to get a distribution of a higher dimension. The composition is described in the following definition.

Definition 2.1. For two arbitrary distributions π1(U) and π2(V) their composition is given by the formula

π1(U) � π2(V) =
π1(U)π2(V)

π2(U ∩ V)

if π1(U ∩ V) ≪ π2(U ∩ V), otherwise the composition remains undefined.
The symbol π1(K) ≪ π2(K) means that π1(K) is dominated by π2(K), which in its turn means (in the considered finite

setting) ∀x ∈ ×j∈KXj; (π2(x) = 0 H⇒ π1(x) = 0). Moreover, if for any x ∈ ×j∈U∩VXjπ2(x) = 0, then by dominance

π1(U ∩ V) ≪ π2(U ∩ V) there is a product of two zeros in the numerator and we take 0·0
0 = 0.

The result of the composition (if defined) is a new distribution. We can iteratively repeat the process of composition
to obtain a multidimensional distribution. That is why the multidimensional distribution is called a compositional model.
Regarding the fact that the operator � is neither commutative nor associative, we always apply the operator from left to
right; e.g.,

π1(K1) � π2(K2) � · · ·� πn(Kn) = (· · · (π1(K1) � π2(K2)) � · · ·) � πn(Kn).

Therefore, in order to construct such a model it is sufficient to determine a sequence of low-dimensional distributions
π1, π2, . . . , πn – we call it a generating sequence.

Fromnowon,weconsider a generating sequenceπ1(K1), π2(K2), . . . , πn(Kn) such thatπ1(K1)�π2(K2)�· · ·�πn(Kn) is
defined. Therefore,wheneverdistributionπi is used,weassume it is defined for variablesKi . A sequenceof setsK1, K2, . . . , Kn

is calledmodel structure and it is denoted by P . If not specified otherwise, P = K1, . . . , Kn where (K1 ∪ · · · ∪ Kn) = N, and
we say that P is defined over N and Ki ∈ P for every i ∈ {1, . . . , n}. One may denote Ki as K

P

i to emphasise that Ki ∈ P . In
addition, each set Ki can be divided into two disjoint parts with respect to model structure. We denote them R(Ki) and S(Ki) :
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Fig. 1. Different persegrams belonging to one model structure P .

R(Ki) = Ki\(K1 ∪ · · · ∪ Ki−1),

S(Ki) = Ki ∩ (K1 ∪ · · · ∪ Ki−1).

It has the following meaning: R(Ki) denotes the variables first occurring in the sequence (meaning from left to right). S(Ki)
denotes the variables which have already been used. Observe that Ki = R(Ki) ∪ S(Ki) . |P| denotes the number of sets in the
structure, i.e., |P| = n for P = K1, . . . , Kn.

As stated in the introduction,while amodel is put together, a systemof (un)conditional independencies is simultaneously
introduced by the structure of the generating sequence.

Example 2.2. Let {u, v} = N, u 6= v. π1(u), π2(v) is a generating sequence of a compositional model π1 � π2. Then
u⊥⊥v[π1 � π2]. Indeed, by applying the operator of composition one gets

π1(u) � π2(v) =
π1(u)π2(v)

π2(∅)
= π1(u)π2(v),

which corresponds to the definition of independence of variables u and v.
Similarly, assume {u, v,w} = N are three distinct variables π1(u,w), and π2(v,w) is a generating sequence of a com-

positional model π1 � π2. Using Definition 2.1 we get

π1(u,w) � π2(v,w) =
π1(u,w)π2(v,w)

π2(w)
.

Then u⊥⊥v|w[π1 � π2] by the definition of conditional independence.

The more complex the model structure is, the more difficult the seeking of induced independencies is. Let us note that
the set of independencies induced by a structure is valid for any compositional model with this structure regardless the
generating distributions’ properties. Obviously, one can read induced independencies directly from the model structure. To
increase the lucidity and readability of this text, we have decided to use a specific visualisation of the structure, and we
present the procedure for reading induced independencies using this tool.

2.1. Persegrams

It is well-known that one can read conditional independence relations of a Bayesian network from its graph. A similar
technique has been developed for compositional models. An appropriate tool for this is a persegram – a visualisation tool of
the model structure.

Definition 2.3. Persegram of a structureP = K1, K2, . . . , Kn is a table in which rows correspond to variables from K1∪K2∪
· · ·∪Kn (in an arbitrary order) and columns to sets of variables Ki for all i ∈ {1, . . . , n}; ordering of the columns corresponds
to the structure ordering. A position in the table is marked if the respective set contains the corresponding variable. Markers
for the first occurrence of each variable (i.e., the leftmost markers in rows) are box-markers and for other occurrences there
are bullets.

Example 2.4. Let P = K1, . . . , K5 be structure of a compositional model such that K1 = {u}, K2 = {v,w}, K3 =
{u, v, x}, K4 = {w, x, y}, K5 = {x, y, z}. Since the row ordering is not specified in Definition 2.3, the corresponding perseg-
ram can be visualised not only as in Fig. 1a, but also in many other ways. See another persegram in Fig. 1b.
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Observe that bullets in ith column correspond to S(KP

i ) and box-markers to R(KP

i ) .
To be able to simply handle characteristic properties of the respective structures and persegrams, we introduce a function

] · [P : N → {1, . . . , n}

such that ]u[P returns the index of set KP

i with the first appearance of u in P for every variable u ∈ (KP

1 ∪ · · · ∪ KP

n ). Hence,
]u[P= min{i : u ∈ KP

i }. Due to the previously established notation, it can be said that KP

]u[P
is a column KP

i where u ∈ R(KP

i ) ,

i.e., ]u[P= i : u ∈ R(KP

i ) . The symbol P may be omitted in ]u[P if the context is clear.

Example 2.5. Take themodel structureP = K1, . . . , K5 from Example 2.4. One can read the following properties from both
of its persegrams in Fig. 1: ]u[P= 1, ]v[P= 2, ]w[P= 2, ]x[P= 3, ]y[P= 4, ]z[P= 5, and

R(KP

1 ) = {u}, S(KP

1 ) = ∅,

R(KP

2 ) = {v,w}, S(KP

2 ) = ∅,

R(KP

3 ) = {x}, S(KP

3 ) = {u, v},

R(KP

4 ) = {y}, S(KP

4 ) = {w, x},

R(KP

5 ) = {z}, S(KP

5 ) = {x, y}.

Definition 2.6. For arbitrary variables u, v ∈ N and structure P over N we introduce a binary relation u �P v such that
u �P v if and only if ]u[P≤]v[P . Moreover, we introduce the relation≺P : u ≺P v⇔]u[P<]v[P .

The following convention will be used throughout the paper: Given a structure P over N, set U ⊆ N and variable v ∈ N,
the term U ≺P v denotes that u ≺P v for all u ∈ U. The symbol P may be omitted if the context is clear.

Example 2.7. Let K1, . . . , K5 be the same model structure as in Example 2.4 again. According to the former definition one
can see that u ≺ v � w ≺ x ≺ y ≺ z in both persegrams from Fig. 1.

2.2. Induced models

In this section we shall demonstrate how to read induced conditional independence relations from a persegram repre-
senting a structure of a compositional model. Such independencies are indicated by the absence of a trail connecting relevant
markers and avoiding otherswhich is defined below.

Definition 2.8. A sequence of markers m0, . . . ,mt of a persegram corresponding to structure P is called a Z-avoiding trail
(Z ⊆ KP

1 ∪ · · · ∪ KP

|P|) that connectsm0 andmt if it meets the following five conditions:

0. m0 andmt do not correspond to a variable from Z;
1. for each s = 1, . . . , t a couple (ms−1,ms) is either in the same row (i.e., horizontal connection) or in the same column

(vertical connection);
2. each vertical connection must be adjacent to a box-marker;
3. no horizontal connection corresponds to a variable from Z;
4. vertical and horizontal connections regularly alternate with the following possible exception: at most two vertical

connections may be in direct succession if their common adjacent marker is a box-marker of a variable from Z.

If a Z-avoiding trail connects two box-markers corresponding to variables u and v, we say that these variables are connected
by a Z-avoiding trail. This situation will be denoted by u⊥⊥/ v|Z[P].

By investigating Definition 2.8 further, the readerwill find that no condition of the definition is dependent on the order of
rows in the considered persegram. That would not be appropriate either, because all persegrams representing the structure
of a generating sequence are equivalent regardless of the row ordering (see the definition of persegram – Definition 2.3).
Then the system of Z-avoiding trails induced by a persegram can be obtained by any other persegram of the considered
structure. In the sense of the previous definition, all persegrams corresponding to P are equivalent.

Example 2.9. Consider a persegram visualising a structure P as it is depicted in Fig. 2. There is a sequence of markers in
each part of it. In order to illustrate vertical and horizontal connections and to highlight the ordering, each two consecutive
markers are connected with a line.
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Fig. 2. Different trails connecting uwith some other variables.

There is a sequence ofmarkers [K1, u], [K5, u], [K5, z] in Fig. 2a. Considering Z = ∅, it forms a Z-avoiding trail connecting
u and z. However, considering Definition 2.8, this sequence avoids many other variables and Z may have various content. In
fact, Z can be any subset of {v,w, x, y}. Hence, u⊥⊥/ v|Z[P] for any Z ⊆ {v,w, x, y}.

Similarly, the sequence of markers [K1, u], [K5, u], [K5, z], [K5, y], [K4, y], [K4,w], [K3,w], [K3, x] from Fig. 2b is a {z}-
avoiding trail. Contrary to Fig. 2a, one cannot replace z by any other variable. Otherwise, the 4th condition fromDefinition 2.8
would be corrupted. However, the trail depicted in Fig. 2b is {v, z}-avoiding too.

With the help of Z-avoiding trails, the so-called (un)conditional (in)dependencies induced by a persegram are introduced.

Definition 2.10. Consider a persegram corresponding to a structure P over N and three disjoint subsets U, V, Z ⊂ N such
that U 6= ∅ 6= V . The sets of variables U and V are conditionally independent given Z in P (in symbol U⊥⊥V |Z[P]), if no u ∈ U
is connected with a v ∈ V by a Z-avoiding trail. Otherwise U and V are conditionally dependent given by Z in P , written
U⊥⊥/ V |Z[P].

The induced independence model I(P) and the induced dependence model D(P) of structure P are defined as follows:

I(P) = {〈U, V |Z〉 ∈ T (N);U⊥⊥V |Z[P]},

D(P) = {〈U, V |Z〉 ∈ T (N);U⊥⊥/ V |Z[P]},

where the symbol T (N) denotes the class of all disjoint triplets over N:

T (N) = {〈U, V |Z〉 : U, V, Z ⊆ N,U 6= ∅ 6= V,U ∩ V = V ∩ Z = Z ∩ U = ∅}.

The concept of induced (in)dependencies lives up to expectations that there is a parallel between this and independencies
valid in any compositionalmodelwith the same structure. The connection between independence read froma compositional
model and from its persegram is elucidated by the following theorem. The proof can be found in [2].

Theorem 2.11. Consider a generating sequence π1(K1), . . . , πn(Kn), the corresponding structure P , and three disjoint subsets
U, V, Z ⊆ K1 ∪ · · · ∪ Kn such that U 6= ∅ 6= V. Then:

U⊥⊥V |Z[P] ⇒ U⊥⊥V |Z[π1 � · · ·� πn].

It is important to realise that (analogously to the situation when Bayesian networks or decomposable models are consid-
ered) one can be sure about the validity of the indicated independence relations for any distribution which is represented
by a compositional model with the given persegram (structure).

2.3. Other preliminaries

A trivial fact follows from Definition 2.8. It concerns variables appearing for the first time in the last column. Before we
introduce this fact in the form of a lemma, let us illustrate it with the help of the following example.

Example 2.12. Consider the persegram from Fig. 3. I would like to show that there is no Z-avoiding trail connecting z ∈ R(K5)
(first appearing in the last column) with w 6∈ K5 (not belonging to the last column) for Z = {u, v, y}. Let us try to construct
such a sequence of markers forming a Z-avoiding trail.

Three different sequences ofmarkers are depicted in Fig. 3. Let us summarise requirements necessary for these sequences
to be Z-avoiding trails:
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Fig. 3. Different trails violating 3rd condition of Definition 2.8 if Z = {u, v, y}.

• Consider the sequence of markers highlighted in Fig. 3a: By the 3rd condition of Definition 2.8 (no horizontal connection
corresponds to a variable from Z), Z must not contain a variable y (y 6∈ Z).

• Fig. 3b: Similarly, v 6∈ Z for the same reasons.
• Fig. 3c: u, v 6∈ Z.

Combining the restrictions on Z together, one gets the following corollary: By choosing Z = S(K5) = {u, v, y}, none of the
above-discussed sequences forms a Z-avoiding trail since each of them contains a horizontal connection corresponding to
a variable from S(KP

|P|) . These horizontal connections violating the 3rd condition of Definition 2.8 are drawn by dotted lines.
Since there is no other possible S(K5) -avoiding trail between w and z, w⊥⊥z|S(K5) holds due to Definition 2.10.

Lemma 2.13. Consider a structure P = K1, . . . , Kn and distinct variables u, v ∈ (K1 ∪ · · · ∪ Kn) such that u ∈ R(Kn) and
v 6∈ Kn. Then u⊥⊥v|S(Kn) [P].

Proof. Consider a persegram of P . Since u belongs to the last column of P (u ∈ KP

|P|), every trail from u has to begin with a
vertical connection inKn to amarker corresponding toavariable from S(Kn) (otherwise, in a casewhere thevertical connection
connects two variables from R(Kn) , the horizontal and vertical connections could not regularly alternate). However, no S(Kn)-
avoiding trail may contain a horizontal connection corresponding to a variable from S(Kn) , and such a trail must not contain
any marker out of the last column. Since u 6∈ Kn, a trail representing u⊥⊥/ v|S(Kn) cannot exist; therefore, u⊥⊥v|S(Kn) [P] by
Definition 2.10. �

To simplify the following, we introduce the concept of the substructure induced by a set of variables. Unlike the subgraph
which contains exactly those variables that induce it, the substructure is usually defined for some superset.

Definition 2.14. A substructure of a structure P = K1, . . . , Kn induced by a set U ⊆ (K1 ∪ · · · ∪ Kn) is its minimal left part
containing all variables U. P[U] = K1, . . . , Kmax{]u[:u∈U}

Persegram of P[U] is created from persegram of P by removing columns to the right of the one with the farthest right
box-marker corresponding to a variable from U.

Remark 2.15. Observe that, given U and Z ⊂ U, any sequence of markers forming a Z-avoiding trail in a persegram of P[U]
forms a Z-avoiding trail in a persegram of P .
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Fig. 4. Visualisation of a structure and its substructure which is induced by {u, x}.

Fig. 5. Illustration of Lemma 2.17.

Example 2.16. Consider a structure P = K1, . . . , K5 from Example 2.4 again. Its corresponding persegram is in Fig. 4a.
Suppose U = {u, x} holds. One can then find a persegram of the induced persegram P[U] in Fig. 4b. Observe that P[U] is
defined not only over {u, x}, but also over {v,w}.

The concept of an induced substructure brings one very important advantage. Searching of Z-avoiding trails connecting
uwith v in a persegram may be restricted to a persegram of its substructure induced only by {u, v} ∪ Z.

Lemma 2.17. Consider a persegram of structure P over N, u, v ∈ N, and Z ⊆ N \ {u, v}. If u⊥⊥/ v|Z[P], then all Z-avoiding trails
connecting u with v are in the persegram of its substructure P[{u, v} ∪ Z].

Proof. Assume that there is a Z-avoiding trail representing u⊥⊥/ v|Z[P] containing markers out of the area defined by
P[{u, v} ∪ Z]. We show that if Z-avoiding trail from u leaves the area defined by P[{u, v} ∪ Z], then it cannot end up
in v which contradicts the assumption. To understand our way of thinking, the reader should have a careful look at Fig. 5b
during the procedure.

Assume that τ is a Z-avoiding trail representing u⊥⊥/ v|Z[P] with a marker out of P[{u, v} ∪ Z]. That is, τ = m0, . . . ,mt

is a sequence of markers where m0 corresponds to u. Let mi be the first marker in the sequence τ such that it comes out of
the part of persegram corresponding to P[{u, v} ∪ Z]. Since it is the first marker in such a column, a horizontal connection
had to be used between mi−1 and mi and therefore mi has to be a bullet. By Definition 2.8, the trail now has to continue
with a vertical connection to a box-marker. Since this box-marker cannot correspond to any variable from Z (it is out of
P[{u, v}∪Z]), one has to continuewith a horizontal connection (by definition, to the right of the box-marker (firstmarker in
the row) – there is nothing on the left in the same row) to a bullet. Thenwe againmake a vertical connection to a box-marker
which does not correspond to any variable from Z , etc. From such a trail τ , there is no return to v. Therefore such a trail
cannot exist, which contradicts the assumption. �

Example 2.18. Let us illustrate the idea of proving Lemma 2.17. Consider the persegram from Fig. 5, its corresponding
structure P , and Z = {x}. I am going to show that there is only one {x}-avoiding trail representing u⊥⊥/ w|x. One can find it
in the area corresponding to P[{u,w, x}] in Fig. 5a.

Let us try to create an x-avoiding trail from w to u containing markers out of the highlighted part corresponding to
P[{u,w, x}]. Such an experiment is depicted by the dotted line in Fig. 5b.
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Let us start in the box-marker (K2,w) and continue out of P[{u,w, x}] into (K4,w). To satisfy Definition 2.8 of a Z-
avoiding trail, one has to continue with a vertical connection to a box-marker. (The only possible box-marker is (K4, y)).
Since y 6∈ Z , then by the 4th condition of Definition 2.8 one has to continue with a horizontal connection (to the right –
there is nothing left of any box-marker), etc. Since there is no box-marker corresponding to Z outside of P[{u,w, x}], the
trail moves away from u. Since there is no return for such a trail, it cannot exist.

Lemma 2.17 basically means that, if we are interested in relation u⊥⊥v|Z[P], we may focus only on the subpersegram
P[{u, v} ∪ Z]. This observation is summarised in the following corollary.

Corollary 2.19. Let P be a persegram over N and u, v ∈ N, Z ⊆ N \ {u, v}. Then

u⊥⊥v|Z [P[{u, v} ∪ Z]] ⇔ u⊥⊥v|Z [P].

Proof. The proof is a trivial consequence of Lemma 2.17 and Remark 2.15. �

3. Equivalence problem

By the equivalence problem we understand how to recognise whether two given structures P,P ′ over the same set of
variables N induce the same independence model (I(P) = I(P ′)). A very readable overview of the solution to this problem
using Bayesian networks may be found in [3].

It is of special importance to have a simple rule to recognise that two structures are equivalent in this sense (the notion
of a rule simplicity may differ when considering whether people or a computer will use it), and an easy way to convert P
into P

′ in terms of some elementary operations on structures. These issues are addressed in [5–7]. Another very important
aspect is the ability to generate all structures which are equivalent to a given structure.

We only focus on one part of the equivalence problem in this paper. We introduce and describe two properties of a
model structurewhich are characteristics of a class of equivalent structures. Thismeans that they are necessary to guarantee
the equivalence of different structures. They include the so-called connection set and F-condition set. However, as discussed
at the end of this section, the connection set is not as easily verifiable in cases involving more complex structures; there-
fore, we introduce another property based on the connection set – the so-called core inclusion, which has very interesting
consequences.

Definition 3.1. Structures P,P ′ (over the same variable set N) are called independence equivalent, if they induce the same
independence model I(P) = I(P ′).

Remark 3.2. One may easily see that the above-mentioned definition could be formulated using a dependence model
instead. Structures P,P ′ (over the same variable set N) are independence equivalent iff D(P) = D(P ′). This alternative is
primarily used in most proofs.

Example 3.3. 1. Consider two simple structures P1,P
′
1 over {u, v} as they are depicted in Fig. 6 by corresponding

persegrams. Since there is no possible vertical connection in both persegrams, there can be no Z-avoiding trail for any
Z in these persegrams. Therefore u⊥⊥v|∅ in both P1 and P

′
1. Hence I(P1) = I(P ′1) = {〈u, v|∅〉}. The corresponding

structures are independence equivalent.
2. On the other hand, structures with the same sets (Ki ∈ P2 ⇔ Ki ∈ P

′
2) in a different ordering are not equivalent.

Let N = {u, v,w} and consider the following structures P2,P
′
2 visualised in Fig. 7. Observe that u⊥⊥v|∅[P2] but

u⊥⊥/ v|∅[P ′2]. On the contrary, u⊥⊥/ v|w[P2] and u⊥⊥/ v|w[P ′2]. The set ordering is important.

Recall that each Z-avoiding trail contains one or several vertical connections. However, contrary to the persegram from
Fig. 7b, there is no possible vertical connection between markers corresponding to variables u, v in the persegram from Fig.
7a. That is why these structures are not equivalent. One of the characteristic properties is based on this observation.

Fig. 6. Persegrams of two equivalent structures.
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Fig. 7. Persegrams of two non-equivalent structures.

Fig. 8. Connections in different persegrams.

3.1. Characteristic properties

Now, step by step, we deduce two structural properties necessary for independence equivalence of the respective struc-
tures: the connection set and the so-called F-condition set necessary for independence equivalence of the underlying struc-
tures. The proof of sufficiency of these properties is not included in this paper.

3.1.1. Connection set
Two structures are equivalent if and only if they induce the same dependence models. The dependence relation is

represented by a Z-avoiding trail in the corresponding persegram. Thus, in case of two equivalent structures, one should be
able to create the same set of Z-avoiding trails including the elementary ones that are composed only of two markers – one
vertical connection.

It turns out that the set of vertical connections is just the characteristic property of a class of equivalent persegrams.

Definition 3.4. Consider a structure P = K1, . . . , Kn and two distinct variables u, v ∈ (K1 ∪ · · · ∪ Kn). We say that u, v
are connected in P (u ↔P v) iff u ∈ KP

]v[ or v ∈ KP

]u[. The set of all pairs E(P) = {〈u, v〉 : u, v ∈ N, u ↔P v} is called a
connection set of P .

Remark 3.5. The previous definition basically means that u, v are connected in P iff there is a column in its persegram
containing markers of both variables and at least one of them is a box-marker. It means that u↔ v corresponds to vertical
connection from Definition 2.8.

The following convention will be used throughout the paper: Given variablew ∈ N, U ⊆ N \ {w} and a structure P over
N, the term U ↔P w denotes that u↔P w for every u ∈ U. The symbol P may be omitted if the context is clear.

For purposes of the following text, one should realise that when u↔P v, there is an obvious parallel between ordering
of variables u, v and content of respective columns K]u[, K]v[. It is summarised in the following trivial lemma.

Lemma 3.6. Let P = K1, . . . , Kn be a structure and u, v ∈ (K1 ∪ · · · ∪ Kn) two distinct variables. Then

u �P v and u↔P v⇔ u ∈ KP

]v[.

Proof. The lemma is a trivial consequence of Definition 3.4. �

Observe that u ∈ S(KP

]v[) in the previous lemma in case of strict version u ≺P v.

Example 3.7. Consider three different structures P2,P
′
2,P3 depicted in Fig. 8.

One can read the following relations using persegrams from Fig. 8:

P2 : {u, v} ↔P2 w, E(P2) = {〈u,w〉, 〈v,w〉},

P
′
2 : u↔P

′
2
w, v↔P

′
2
w, u↔P

′
2
v, E(P ′2) = {〈u,w〉, 〈v,w〉, 〈u, v〉},

P3 : u↔P3 w, v↔P3 w, E(P3) = {〈u,w〉, 〈v,w〉} = E(P2).
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Fig. 9. A contra-example that Lemma 3.9 cannot be generalised.

As previously stated, the connection u ↔ v corresponds to the existence of a vertical connection between markers
corresponding to u, v. Therefore, if there is a connection between two variables, then there is a simple trail connecting the
corresponding variables. Since the trail contains no other markers, it is Z-avoiding for any Z such that Z ⊆ N \ {u, v}.

Let us introduce the following specific notation, which allows us to express more than one dependence statement by a
single term. Given a structure P over N, distinct variables u, v ∈ N and a subset U ⊆ N \ {u, v}, the symbol u⊥⊥/ v| + U[P]
will be interpreted as the following:

u⊥⊥/ v| + U[P] ≡ ∀W such that U ⊆ W ⊆ N \ {u, v} one has u⊥⊥/ v|W[P].

In words, u and v are (conditionally) dependent in P given any superset of U. If U is empty, we write ∗ instead of+∅.

u⊥⊥/ v| ∗ [P] ≡ ∀W such that W ⊆ N \ {u, v}, u⊥⊥/ v|W[P].

Lemma 3.8. Consider a structure P . If for two distinct variables u↔P v, then u⊥⊥/ v| ∗ [P].

Proof. Without affecting the generality, suppose u �P v. Then by Lemma 3.6, u ∈ K]v[. The sequence of markers [K]v[, u],
[K]v[, v] is aW-avoiding trail for anyW ⊆ N \ {u, v}. Hence u⊥⊥/ v| ∗ [P]. �

As shown below, one can prove that the connection set is one of the characteristics common to all equivalent structures
using this lemma. That is, E(P) is a characteristic property of all the structures from any equivalent class.

Lemma 3.9. Let P be a structure over N. Then for any two distinct variables u, v ∈ N such that u �P v,

u 6∈ S(K]v[) ∧ u⊥⊥v|S(K]v[) [P] ⇔ u =P v.

Proof ⇒ Suppose u⊥⊥v|S(K]v[)[P] and u↔P v. This, however, contradicts Lemma 3.8, which asserts that u⊥⊥/ v| ∗ [P] and
therefore u⊥⊥/ v|S(K]v[) [P] as well.
⇐ Suppose u =P v. This excludes u ∈ S(K]v[) . Thus, assume u 6∈ S(K]v[) and u⊥⊥/ v|S(K]v[) [P]. Since u �P v, and
S(K]v[) ≺P v, then according to Lemma 2.13 u⊥⊥v|S(K]v[) [P[v]]. By corollary 2.19 u⊥⊥v|S(K]v[) [P], which contradicts the
assumptions. �

Interestingly, notice that while a more general implication u⊥⊥v| + S(K]v[) [P] ⇒ u = v holds, the opposite one does
not. One can find a counterexample of the opposite generalisation in the second part of the following example:

Example 3.10. Let P be a structure with a persegram from Fig. 9. Since u =P v then u⊥⊥v|S(K]v[) [P] by Lemma 3.9. Let
us check whether there is an S(K]v[) -avoiding trail in Fig. 9a. We may restrict the searching area to an induced substructure
P[{u, v} ∪ S(K]v[) ] = P[v] by Corollary 2.19. The area corresponding to this substructure is highlighted. Since the only
sequence of markers connecting u, v contains a horizontal connection corresponding to a variable from S(K]v[) , there is no
S(K]v[) -avoiding trail in the persegram of P[v]. Thus, u⊥⊥v|S(K]v[) [P] by Corollary 2.19.

One can easily find an example that u = v 6⇒ u⊥⊥v| + S(K]v[)[P] in Fig. 9b. It is enough to realise that {z} ∪ S(K]v[) is just
a special case of+S(K]v[) .

With the help of the previous lemma, one can prove the following important assertion.

Lemma 3.11. Let P be a structure over N and u, v ∈ N two distinct variables. Then

u↔P v⇔ u⊥⊥/ v| ∗ [P].
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Proof. By Lemma3.8, itwill be enough to prove the implication (⇐). Suppose for contradiction thatu⊥⊥/ v|∗[P] and u =P v;
one can assume without loss of generality that u ≺P v. Then Lemma 3.9 leads to contradiction, since u⊥⊥v|S(K]v[) . �

Corollary 3.12. Let P,P ′ be two structures over N. If I(P) = I(P ′) then E(P) = E(P ′).

Remark 3.13. Compositionalmodel is, in fact, amultidimensional probability distribution and, as such, it can be represented
by a Bayesian network as well. If one uses the conversion algorithm from the [1], then the structure of a created Bayesian
network G(N, E) – acyclic directed graph (dag) – induces the same independence model as the input compositional model
structure P . Moreover, the connection defined above corresponds precisely to the edge of the corresponding dag in case of
the mentioned algorithm. That is, u ↔P v ⇔ u → v in G or u ← v in G. This gives un a check that our conclusions
are correct. Indeed, the set of connections E(P) (sometimes denoted as a skeleton) is a characteristic property of all dags
equivalent with G by [3].

Example 3.14. In Example 3.3 the equivalence of different structureswas discussed. The first two (P1,P
′
1) were equivalent,

the second two (P2,P
′
2) were not. Let us look at that example again in the light of the previous corollary.

1. Let P1,P
′
1 be two simple structures depicted in Fig. 6.

One may easily see that E(P1) = E(P ′1) = ∅. The equality I(P1) = I(P ′1) = {〈u, v|∅〉} is shown in Example 3.3.

2. On the other hand, consider structures P2,P
′
2 depicted in Fig. 7. Notice that the corresponding connections are high-

lighted by arrows in Figs. 8a and 8b. Due to Example 3.3 the reader knows that I(P2) 6= I(P ′2). Since E(P ′2) =
E(P2) ∪ {〈u, v〉}, the reason for non-equivalence is obvious now.

3. Consider structure P2 depicted in Fig. 8a again. Is there any structure not equivalent with P2 but inducing the same
connection set? Indeed, for an example see structure P3 depicted in Fig. 8c. Observe that u⊥⊥/ v|w[P2] but u⊥⊥v|w[P3].
Hence, I(P3) 6= I(P2) while E(P3) = E(P2).

The 3rd part of Example 3.14 illustrates the fact that the same connection sets condition is necessary but not sufficient to
guarantee the equivalence of respective structures. Therefore it is necessary to find an additional property invariant through
a class of equivalent structures.

3.1.2. F condition set
Weknow that structuresP2,P3 from the 3rd part of Example 3.14 are not equivalent despite the fact that E(P2) = E(P3).

Considering relation�P , every structure induces a partial ordering of variables. One can easily verify that u ≺P2 v ≺P2 w
while u �P3 w ≺P3 v. The induced variable ordering is different for non-equivalent structures.May the ordering of variables
be some kind of characteristic property? Definitely not in this simple way: See Fig. 6, where I(P1) = I(P ′1) while u ≺P1 v
and u ≻P

′
1
v.

It follows that two structures may induce different orderings of variables despite being equivalent. However, if we are
only interested in the ordering of groups of specially connected variables, we obtain another property characteristic for a
class of equivalent structures. This property is based on the so-called F condition defined below.

Definition 3.15. Consider a structure P over N and three disjoint variables u, v,w ∈ N. We say that the triplet 〈u, v|w〉 is
F-condition if

{u, v} ≺P w, {u, v} ↔P w, and u =P v.

It is denoted by u≺↔w≻↔ v[P]. The set of triples F(P) = {〈u, v|w〉 : u≺↔w≻↔ v[P]} is called F-condition set induced by P .

The reason for calling the above-defined condition F-condition is very prosaic. Consider, for example, the structure P

depicted in Fig. 10. The reader can easily verify that u≺↔ w≻↔ v[P]. Observe that w-avoiding trail connecting box-markers
of u and v evokes a mirror image of letter F.

An example of F-condition can be found in P2 depicted in Fig. ??, where u≺↔ w≻↔ v[P2]. There is no F-condition in P2′

(Fig. 8b) and P3 (Fig. 8c).

Remark 3.16. Lemma 3.6 says that conditions u ≺P w and u ↔P w are equivalent to u ∈ S(KP

]w[). With regards to this,
the previous definition may be reformulated in the following way: Let P be a structure over N and u, v,w ∈ N. F-condition
u≺↔w≻↔ v[P] is a triplet of variables 〈u, v|w〉 such that u, v ∈ S(KP

]w[) and u =P v.

We have already shown that possessing the same connection sets is a necessary condition for equivalence of given struc-
tures. Therefore, when comparing two equivalent structures, the connection set may be considered as fixed. Now we show
that the F-condition set is another characteristic property of a class of equivalent structures.



Author's personal copy

610 V. Kratochvíl / International Journal of Approximate Reasoning 52 (2011) 599–612

Fig. 10. u⊥⊥/v| + w.

Lemma 3.17. If three distinct variables u, v,w ∈ N satisfy {u, v} ↔P w and u =P v in a structure P over N, then

u≺↔w≻↔ v[P] ⇔ u⊥⊥/ v| + w[P].

Proof ⇒ Suppose u≺↔ w≻↔ v[P]. Then u, v ∈ S(KP

]w[) by Remark 3.16. As one can see in Fig. 10, the sequence of markers
[K]u[, u], [K]w[, u], [K]w[,w], [K]w[, v], [K]v[, v] is a W-avoiding trail for every W ⊆ N \ {u, v} such that w ∈ W . Hence,
u⊥⊥/ v|W[P] for every such aW , which can be written as u⊥⊥/ v| + w[P].
⇐ To prove sufficiency by contradiction, assume that u⊥⊥/ v| + w[P] and not u ≺↔ w ≻↔ v[P], which means that either
u �P w or v �P w. Assume without loss of generality u ≺P v (equality may be omitted since u =P v) and hence,
v �P w. However, we may only consider the strict case v ≻P w. Indeed, otherwise v ∈ R(K]w[) and u ↔P v which
contradicts with the lemma assumption that u =P v. The fact v ≻P w implies that w ∈ S(KP

]v[) by assumption w ↔P v

and Lemma 3.6. Since we assume that u =P v, then u⊥⊥v|S(K]v[) [P] by Lemma 3.9. This, however, contradicts with
u⊥⊥/ v| + w[P]. �

Corollary 3.18. Let P,P ′ be two structures over N. If I(P) = I(P ′) then F(P) = F(P ′).

Remark 3.19. It has been mentioned in Remark 3.13 that there is an algorithm in [1] that enables us to create a dag G
that induces the same independence model as a structure P – i.e., I(P) = I(G). Moreover, each edge in G corresponds to a
connection fromP . Note that there is an edge u↔ v in G if and only if u→ v or u← v in G. Since arrow orientation is given
by relation≺P (if u ≺P v and u↔P v then u→ v in G) in the conversion algorithm, then each F-condition defined above
implies an immorality (vee-triple) in the respective dag G. Recall that ewe say that distinct nodes u, v,w form an immorality
in a dag G = (N, E) if u→ w in G, v→ w in G, and u =G v.

We have derived two properties necessary for independence equivalence of given structures: same connection and F-
condition sets. However, are these properties also sufficient to guarantee the equivalence of respective structures? Let us
simply say that the answer is positive. However, since the goal of this paper is to present necessary conditions for equivalence
of structures, we will not need this assertion here, and therefore we will not present its rather complex proof.

3.2. Column approach

One may disclose a possible non-equivalence of given structures with the help of characteristic properties introduced in
the previous section. A problem ariseswhen the considered structures aremore complex and the rule of same connection sets
is not so easily verifiable. It would be of special importance to have a rule concerning particular sets defining the structure
instead of connections.

Is there such a condition? To cope with this question, we need the following definition.

Definition 3.20. Let P = K1, . . . , Kn be a structure. A set Ki is a non-trivial column iff R(Ki) is non-empty set. Otherwise it is
a trivial column of P . The symbol ntriv(P) denotes the set of all non-trivial columns in P . (ntriv(P) = {Ki ∈ P : R(Ki) 6= ∅})

Definition 3.21. Let P = K1, . . . , Kn be a structure and U ⊆ (K1∪ · · ·∪Kn). The set U is non-trivial in P iff there is a Ki ∈ P

such that U ⊆ Ki and R(Ki) ∩ U 6= ∅. Otherwise the set U is trivial in P .

Remark 3.22. Observe that, since R(KP

i ) 6= ∅ for nontrivial KP

i , it is obvious that ntriv(P) ≤ |N|.

The following lemma proves that the set of mutually connected variables takes an important role in the structure. It is a
consequence of Lemma 3.6.
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Lemma 3.23. Let U be a non-empty set of mutually connected variables in P (u↔P u′ for all u, u′ ∈ U). Then U is a non-trivial
set in P .

Proof. Choose u ∈ U such that u �P u′ for all other u′ ∈ U. This choice is always possible and ensures that U ⊆ KP

]u[.

Indeed, u↔P u′ by assumption and therefore u′ ∈ KP

]u[ by Lemma 3.6 for all u′ ∈ U \ {u}. Since u ∈ R(K]u[) by definition of
function ] · [P , then U is a non-trivial set in P by Definition 3.21. �

With the help of the previous lemma, one can prove the following interesting assertion concerning non-trivial sets and
class of independence equivalent structures.

Lemma 3.24. If a set of variables U is non-trivial in a structure P , then it is non-trivial in every structure equivalent with P .

Proof. Assume that P ′ and P are equivalent. Then E(P) = E(P ′) and F(P) = F(P ′) according to Corollaries 3.12 and 3.18.
The non-triviality of U implies the existence of a column KP

]w[ such that w ∈ U and U ⊆ KP

]w[. Then u �P w and u ↔P w

for all u ∈ (U \ {w}) by Lemma 3.6. Let M ⊆ U be a maximal subset of mutually connected variables in P such that both
R(KP

]w[) ∩ U ⊆ M and M ↔P u for all u ∈ U \ M. Put V = U \ M. Observe that not only M 6= ∅ (w ∈ M) but also V ≺P w.

Indeed, suppose that ∃v ∈ V such that v �P w. Then v ∈ R(KP

]w[) by definition ofw, which contradicts the choice ofM. One
can distinguish two cases: V = ∅ and V 6= ∅.

If V = ∅ then U = M is a set of mutually connected variables in P
′ by E(P) = E(P ′). Therefore U is non-trivial in P

′ by
Lemma 3.23.

Suppose now V 6= ∅. Since M is a set of mutually connected variables in P
′ by E(P) = E(P ′), then M is non-trivial by

Lemma 3.23 in P
′ and therefore ∃m ∈ M such thatM ⊆ KP

′

]m[. The next step is to prove that V ⊂ KP
′

]m[ as well.

Assume for a contradiction that ∃v ∈ V such that v 6∈ KP
′

]m[. There exists v′ ∈ V \ {v} such that v′ =P v (otherwise

v ∈ M). Considering the fact V ≺P w and {v, v′} ↔P w, we get v≺↔w≻↔ v′[P] and v≺↔w≻↔ v′[P ′] by F(P) = F(P ′). The

fact thatw ∈ M ⊆ KP
′

]m[ impliesw �P ′ m by Lemma 3.6. Together with v ≺P ′ w (because of v≺↔w≻↔ v′[P ′]), it follows that

v ≺P ′ m. Moreover, v↔P ′ m by definition ofM and Corollary 3.12, and therefore v ∈ KP
′

]m[ by Lemma 3.6, which contradicts
the assumption.

Hence, V ⊂ KP
′

]m[. Thus U = V ∪ M ⊆ KP
′

]m[ andm ∈ R(KP
′

]m[) which guarantees the non-triviality of U in P
′ by Definition

3.21. �

Observe that there is a close relationship betweennon-trivial columns andnon-trivial sets of variables. In fact, an arbitrary
non-trivial column KP is a non-trivial set U = KP as well.

Lemma 3.25. Having fixed structure P , the maximal non-trivial sets (with respect to inclusion) in P coincide with maximal sets
in ntriv(P) (with respect to inclusion), that is maximal columns with at least one box-marker.

Proof. To prove this lemma it is enough to realise that every non-trivial column Ki ∈ ntriv(P) represents a non-trivial set
of variables U = Ki at the same time. Similarly, an existence of some non-trivial set U implies the existence of a non-trivial
column KP such that U ⊆ KP by Definition 3.21.

Suppose for a contradiction the existence of a maximal non-trivial column K (which coincides with a non-trivial set U)
and some non-trivial set V such that U ⊂ V . The non-triviality of V implies the existence of K ′ ∈ ntriv(P) such that V ⊆ K ′.
Then K ⊂ K ′ which contradicts the fact that K is maximal non-trivial column with respect to inclusion. In particular, every
maximal non-trivial column is a maximal non-trivial set.

Similarly consider a maximal non-trivial set U. Since U is non-trivial then there exists a non-trivial column Ki where
U ⊆ Ki by assumption. There exists a maximal non-trivial column Kj with Ki ⊆ Kj (possibly i = j). Thus, U ⊆ Kj . As Kj

is a non-trivial set, necessarily U = Kj for otherwise U is not maximal (non-trivial set). Thus U coincides with a maximal
column. �

Definition 3.26. For a structure P , its strong core C∗(P) is the set of maximal non-trivial columns with respect to inclusion.
(C∗(P) = {Ki ∈ ntriv(P) : ∄Kj ∈ ntriv(P) such that Ki ⊂ Kj}.)

Observe that, for a given structureP , its strong core C∗(P) does not contain any trivial columns fromP . C∗(P) ⊆ ntriv(P)

Corollary 3.27. Let P be a structure over N. Then C
∗(P) = C

∗(P ′) for every equivalent structure P ′.

Proof. Since by Lemma 3.24 non-trivial sets are same for equivalent structures, the classes of maximal non-trivial sets in
them coincide. Thus maximal non-trivial columns (by Lemma 3.25) in them coincide. �
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Remark 3.28. Unlike the previous discussed invariants in Remarks 3.13 and 3.19, this characteristic property does not
correspond to any standard characteristics of equivalent dags. Still, given thedefinition, strong structure core could correspond
to a set ofmaximal families inducedby correspondingG = (N, E). Note that by family fam(u)weunderstand the setu∪pa(u)
where pa(u) = {v ∈ N : (v→ u) ∈ E}.

Recall that one can generate all dags which are equivalent to a given onewith the help of the so called legal arrow reversal.
By a legal arrow reversal we understand the change of dag G into dag G′ by replacement of an arrow u→ v (in G) by u← v
(in G′) under the condition that paG(u)∪ u = paG(v). If famG(v) = V = paG(u)∪ {u, v} belongs to maximal families (with
respect to inclusion) then it belongs tomaximal families inG′ aswell. Indeed, since paG′(u) = paG(u)∪v then famG′(u) = V .
Since no other arrow changes, then all other families remain the same and then V belongs to maximal families in G′ and in
all other equivalent dags.

Remark 3.29. Based on work with a variety of equivalent structures, it appears that the strong core definition could be
modified. The new definition of the core would then came as follows: For a structure P , its weak core C(P) is a set of
Ki ∈ ntriv(P) such that Ki 6= S(Kj) for every Kj ∈ ntriv(P).

Note that the extendedweak core also includes not only strong core but also all the columns that are not sharp subsets of
another non-trivial column. However, we are not able to give a simple clear proof that theweak core is another characteristic
of structure equivalence.

4. Conclusion

This paper started with a brief introduction on how to read unconditional independencies induced by a structure of
a compositional model. We then introduced, step by step, several properties necessary for independence equivalence of
the relevant structures of compositional models: Two structures, if equivalent, must have the same connection sets and
F-condition sets. Since it is difficult to verify the existence of the same connection set in more complex structures, we apply
a new approach based on structure columns.

Based on this, we understand a column with a box-marker as a non-trivial set of variables and we have shown that
every non-trivial set in one structure has to be non-trivial in all structures equivalent with it. Columns that have to be in
all persegrams of equivalent structures are called structure core. This offers a powerful tool for determining the possible
non-equivalence of given structures.
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