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Abstract—In this paper, a novel algorithm to blindly separate an
instantaneous linear underdetermined mixture of nonstationary
sources is proposed. It means that the number of sources exceeds
the number of channels of the available data. The separation is
based on the working assumption that the sources are piecewise
stationary with a different variance in each block. It proceeds in
two steps: 1) estimating the mixing matrix, and 2) computing the
optimum beamformer in each block to maximize the signal-to-in-
terference ratio of each separated signal with respect to the
remaining signals. Estimating the mixing matrix is accomplished
through a specialized tensor decomposition of the set of sample
covariance matrices of the received mixture in each block. It uti-
lizes optimum weighting, which allows statistically efficient (CRB
attaining) estimation provided that the data obey the assumed
Gaussian piecewise stationary model. In simulations, performance
of the algorithm is successfully tested on blind separation of 16
speech signals from nine linear instantaneous mixtures of these
signals.

Index Terms—Blind source separation, Cramér–Rao lower
bound, multilinear models, nonstationary processes, tensor de-
composition, underdetermined mixture.

I. INTRODUCTION

I N recent years, a lot of attention has been paid to blind sep-
aration of underdetermined mixtures of signals, in which

the number of original sources is higher than that of the ob-
served signals. Unlike the “(over)determined” case, when the
number of the mixtures is equal to or exceeds the number of the
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sources, the estimation of the mixing transformation (matrix) is
not equivalent to the estimation of the original signals.

Most of the proposed methods rely on the sparsity of sig-
nals in a domain, e.g., the time-frequency one [1], [2], [11]. The
mixing matrix is identified by localizing points where several
sources are active at the same time so that the mixture is locally
overdetermined there. This type of searching usually requires
exhaustive computations, which limits the applicability of these
methods to a lower number of observation channels and sources.

Many algebraic methods for the underdetermined BSS uti-
lize various decompositions of different data structures such as
cumulant, correlation and cross-correlation matrices or tensors.
The original signals are assumed to be mutually independent, so
the task corresponds to independent component analysis [6], and
either the non-Gaussianity, nonwhiteness, or nonstationarity of
the signals is taken into account [8], [10], [12]. A good survey of
the related literature can be found in [12]. These methods pri-
marily estimate the mixing matrix, leaving the retrieval of the
original signals to another step.

In this paper, a novel underdetermined separation method is
proposed, which is suitable for separation of signals that are
non-stationary, having time-varying variances, such as speech
signals or some biomedical signals. The signals are assumed to
be piecewise stationary with a different variance in each block.
This signal model was advocated e.g., by Pham and Cardoso
[21]. Recently, this signal model and a related separation algo-
rithm called “Block Gaussian SEParation” (BGSEP) [25] was
used in a time-domain blind audio separation method called
“Time Audio Blind separation with Complete Decomposition
of the observation space” (TABCD) [14]. In TABCD, several
other ICA algorithms can be used to decompose the observation
space as well, but BGSEP was often the method of the choice
because of its nearly best achievable performance (compared to
other methods) and very low computational complexity. A good
performance of BGSEP compared to other ICA methods in sep-
arating linear mixtures of speech signals was shown in [15].

Performance of BGSEP can be tuned up by a proper selec-
tion of the block length. The method is not overly sensitive to
the selection of the length, but in general it should follow the
rate of the variability of the signal parameters (variances). In
speech processing, stationarity of the signal is assumed in block
of the length 20–30 ms. In biomedical applications, the length
of blocks should be related to a duration of important events
that the data may contain; for example, it is a duration of one
eye blink in electroencephalogram (EEG) or one hearth beat in
electrocardiogram (ECG). The assumption about equal length of

1053-587X/$26.00 © 2010 IEEE



1038 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 3, MARCH 2011

the blocks is used for simplicity of the presentation and usage
of the proposed method. The assumption can be relaxed after a
minor modification of the method, assuming the partitioning of
the signal to be known in advance. Numerical experiments show
that the method produces good separation results although the
partitioning does not match the true model, or if there is no true
piecewise stationary model exactly valid, as in the case of the
speech.

The algorithm proposed in this paper can be regarded as
an extension of BGSEP to underdetermined mixtures. It is
called UDSEP for easy reference. It is based on a canonical
polyadic decomposition (sometimes called “parallel factor
decomposition,” PARAFAC, in the sequel abbreviated as “CP”)
of a three-way tensor composed of covariance matrices of
the mixture in the blocks. It is an extension of the algorithm
“Second Order Blind Identification of Underdetermined Mix-
tures” (SOBIUM) [12]. In SOBIUM, as well as in other CP
methods, high-order tensors are approximated by low-rank
ones, which reveal the structure of the data [3], [9], [27]. The
error of the approximation is measured as a weighted mean of
squared deviations in individual tensor entries.

Traditionally, like in the weighted tensor decomposition
method proposed by Paatero et al. [20], the weights of the
tensor entries are proposed to be inversely proportional to the
variance of the entries to achieve the optimum performance. In
other words, it is assumed that the tensor entries are mutually
independent noisy observations of some true tensor elements,
and that their variances are known. By contrast, what we
propose is a more sophisticated weighting of the mean-square
error (MSE), which reflects possible correlations between
errors in different entries. The weighting is derived for the case
when the tensor is formed of covariance matrices of the given
signal (the mixture) in different non-overlapping time blocks,
and the separated signals are modelled as piecewise temporarily
white Gaussian processes. The weighting was derived from the
maximum likelihood principle. If the statistical model of the
data is different, probably it will need another weighting.

For the tensor decomposition itself it is proposed to adapt
the algorithm of Paatero et al. [20]. This is a specific modifi-
cation of the damped Gauss–Newton or Levenberg–Marquardt
method [19]. The algorithm is initialized by the outcome of SO-
BIUM [12].

Once the mixing matrix is estimated, it can be used for the
separation of the original signals. Many techniques have al-
ready been proposed in the literature, especially those based
on the sparsity of signals [2], [17], [18]. Owing to the piece-
wise stationary model of signals assumed here, we consider
the optimum beamformer in each block, which maximizes the
signal-to-interference ratio of each separated signal with respect
to the remaining signals. We show in the paper that the method
allows, for example, to separate 16 speech sources out of nine
linear instantaneous mixtures of the length 8 s sampled at 16
kHz with the output signal-to-interference ratio (SIR) of 0–5
dB. The separated speech signals are understandable.

The number of the sources may not always be known in ad-
vance. In biomedical applications, it is typically not known. It
would be desirable to have an automatic method of estimating
the number of active sources. One possibility considered in the

paper is the use of the minimum description length (MDL) cri-
terion. Basically, it is equal to the value of the log-likelihood
function of the corresponding signal model plus a penalty term
that expresses complexity of the signal model. The number of
active sources might be estimated as the one leading to the min-
imum MDL criterion.

This paper is organized as follows. Section II introduces
the signal model and tensor of the covariance matrices. In
Section III, a novel weighted criterion for fitting the tensor is
proposed. Sections IV and V contain details of the weighted CP
optimization. Section VI presents a method of estimating the
separated signals based upon the estimate of the mixing matrix.
Section VII contains details of computing the Cramér–Rao
lower bound on the variances of elements of the mixing matrix,
in order to show that the proposed method is asymptotically
statistically efficient. Section VIII details how we compute the
MDL criterion, Section IX contains simulations, and Section X
concludes the paper.

II. SIGNAL MODEL

Assume that the received signal can be written as

(1)

where the mixing matrix has the size , , and the
source matrix contains independent sources, stored in rows.
Next, assume that the signals can be partitioned into blocks
(epochs). In each block, the separated sources have zero mean
and a fixed variance. Let —that is, the th element of
a matrix —denote the variance of the th signal in the th
block. The length of each block is and we assume,
for simplicity, that it is an integer. Let denote the theoretical
covariance matrix of the mixture in the th block. Then

(2)

where is the th column of the matrix , and is the
th row of . The set of the covariance matrices represents

a three way tensor of the dimension with the elements

(3)

Here, represents a parameter vector that consists of all ele-
ments of the matrices and . Symbolically,

(4)

where is the identity tensor of the dimension , and
denotes a matrix multiplication in the mode , 1, 2, 3. The
tensor is written as a sum of rank-one tensors and by
definition, the tensor rank is equal at most . There are three
modes, two of which are equal to , and the third mode has
nonnegative elements.

III. CP/INDSCAL DECOMPOSITION

Identifiability of the CP tensor decomposition has been
studied by several authors, most notably Kruskal [16]. The
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decomposition is called Indscal, if the first two factors are iden-
tical. A sufficient condition requires that ,
where and is the Kruskal rank of and , respectively.
In the best case, and provided that .
Then, the Kruskal condition requires that

(5)

A tighter sufficient (but not necessary) condition on the max-
imum tensor rank admitting an essentially unique decomposi-
tion was derived in [24], see also [13].1 The condition for the
Indscal problem in the real domain is

(6)

where is the indicator of the event , and the matrix
must have a full column rank.
Note that in our model, the number of the free tensor ele-

ments, is due to symmetry of the covariance ma-
trices, and the number of free parameters of the decomposition
is . For and , the latter number
exceeds the former one for any . This fact indicates that sepa-
ration of three sources from two mixtures might be problematic
in this tensor method.2 However, (6) indicates possibility to sep-
arate four sources from three mixtures. The number of sources
that can yet be separated grows quadratically with the number
of mixtures.

Traditional tensor decomposition methods seek for the de-
composition of the tensor by minimizing the mean-square fit

(7)

However, in our statistical model, the estimated tensor elements
are mutually correlated, and the minimization of the criterion in
(7) is not statistically optimum. We prove in Appendix A that
the asymptotically optimum criterion which should replace (7)
is

(8)
where denotes the trace of a matrix, assuming that the co-
variance matrices are invertible. More generally, we can
write

(9)

where the matrices are chosen as with
a suitable small positive constant to maintain regularity of the
criterion under all circumstances. Note that in the special case

the criteria (7) and (9) coincide. For
numerical purposes it is thus convenient to initialize the opti-
mization by the outcome of a standard parallel factor analysis

1The condition (6) applies with probability one if the matrix� is drawn ran-
domly from a continuous distribution.

2Some other methods such as ALESCAF [7] using higher order statistics and
higher than three-way tensors allow identification of three or more non-Gaussian
sources from two mixtures.

algorithm, choose a large initial , and decrease it gradually to-
wards zero.

Note that each of the optimization problems (7)–(9) has the
same scale uncertainty, which basically says that the change of
scale in one mode of any factor can be compensated by appro-
priate change in scale of the same factor in one of the other two
modes. Therefore, it is possible to assume, without any loss in
generality, that all columns of have unit norm, or to fix (ex-
clude from the minimization) one element in each column of the
matrix .

IV. NONNEGATIVITY CONSTRAINT ON

If the SOBIUM algorithm is applied to the tensor , it may
occur that some entries of the estimated matrix are negative,
because this algorithm does not impose any constraint on the
signs of the factor matrices’ elements. It would not give a mean-
ingful model of the data, because the variances of the separated
signals have to be nonnegative by definition.

A vast literature exists on a nonnegative tensor decomposi-
tion—see, e.g., the partial overview in [4]. Since we wish to use
the Levenberg–Marquardt method for the minimization of the
criterion, it seemed natural to adopt the method from [20] which
consists of augmenting the target criterion by a suitable barrier
function. Following [20], we propose subtracting a scaled sum
of logarithms of the factor elements. Such a barrier function is
easy to differentiate. In our case, however, the criterion would
not be invariant with respect to the scale uncertainty, because
only one mode is constrained to be nonnegative, not all. Bearing
this in mind, we propose the criterion

(10)
The criterion in (10) has the advantage that if a column in mode

is multiplied by a constant and the corresponding column in
is divided by the same constant squared, the criterion is not

affected.
In (10), is a positive parameter which starts from an initial

value (e.g., 1) and is decreased gradually towards zero during the
optimization. In each fifth iteration, parameter is multiplied
by a factor smaller than 1, say 0.5. It is important that at the
end of the optimization, should be close to zero so that the
barrier function does not influence position of the minimum of
the criterion. The barrier should only maintain nonnegativity of
elements of .

Note that the presence of the barrier function makes the cri-
terion function smoother in the sense that it removes some local
minima of the function. Thus, for larger the function is easier
to minimize. Gradual decrease of increases probability of the
optimization process not to be stacked in local minima. Alter-
native optimization strategies also exist: e.g., an interior-point
trust-region-based method [5].

V. OPTIMIZATION DETAILS

Optimization of the criterion in (10) can proceed using the
following steps.

1) Initialize the algorithm by the outcome of SOBIUM by De
Lathauwer [12].
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TABLE I
LEVENBERG–MARQUARDT METHOD

2) Make the elements of the factor matrix positive (take an
absolute value or add a constant).

3) Iterate (until convergence is achieved) the LM algorithm

where is the Hessian of the criterion (10), is its gra-
dient, and is a positive parameter that is gradually mod-
ified by the technique described in [19], see also Table I.
After each five steps of the LM algorithm, decrease in (9)
and in (10) to one half of their current respective values.

The closed form of the Hessian and the gradient are derived
in Appendix B. This method usually requires 50–100 iteration
steps to converge. Note that the part of that corresponds to the
estimated elements of is block diagonal and therefore it can
be inverted more effectively. The main block of to be inverted
has the size . The inversion is computationally the most
complex part of the algorithm. The complexity of each iteration
is thus .

VI. ESTIMATION OF THE SEPARATED SIGNALS

Assume that the mixing matrix and the variances of the
separated signals on each interval are already estimated or that
they are known a priori. In terminology of the sensor array pro-
cessing, columns of represent directions of arrivals of waves
that are additively combined on the array sensors to form the
received signals, i.e., rows of the matrix . Although it is not
possible to find an inverse of which has, by assumption, more
columns than rows, we show that it is still possible to esti-
mate the original signals. The separation can be interpreted as
finding beamformers, one for each separated source and each
block. The beamformers are represented by some to-be-deter-
mined - dimensional vectors , , such that

(11)

is an estimate of the th source, the th row of . The expression
(11) can be rewritten as

(12)

Therefore the SIR of the th estimated source in the th block,
where variances of the individual sources are , ,
is

(13)

The SIR is varying from block to block, as well as the beam-
former that maximizes it. Note that (13) can be written as

(14)

where and . It
readily follows that the beamformer maximizing the SIR is the
so-called MVDR beamformer, (up to an arbitrary multiplicative
constant) equal to the principal generalized eigenvector of the
matrix pencil . The beamformer can be further shown
to be equal to

(15)

where is an arbitrary constant. It is convenient to set
so that the proposed th beamformer at the th block is

(16)

Let denote the th block of the data (the mixture) and
be the separated sources in the th block. With the choice (16)
it holds that

(17)

because

(18)

thanks to (2). In other words, the choice (16) ensures the fit
between the mixture of the separated signals and the original
mixture.

An estimated optimum beamformer is obtained by replacing
the theoretical matrices , , and by their
sample estimates. Note that unlike the determined case ,
the SIR of the separated signals will not grow to infinity with
increasing data length, but only approach the SIR of the optimal
beamformer. The optimal SIR of the th estimated source in the
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th block can be written, after a straightforward computation,
as

(19)

The total optimum SIR (for known and ) of the th sepa-
rated source in all blocks together is

(20)

Note that if the th signal were estimated with the same beam-
former in all blocks, the resulting SIR would be worse, in gen-
eral. Such optimum joint beamformer would be equal to

(21)

and its SIR would be

(22)
After some simplifications,

(23)

VII. CRAMÉR–RAO LOWER BOUND

Cramér–Rao lower bound (CRLB) is a tool to verify whether
an algorithm achieves the best achievable performance, mea-
sured in terms of the mean square estimation error of the mixing
matrix . In most practical cases, the CRLB is asymptotically
equal to the covariance matrix of the error of the maximum like-
lihood estimate.

The mixture data in the th block are represented by a zero
mean Gaussian random vector with the covariance matrix
defined in (2). By taking all the available samples into account,
the whole model is parameterized by the elements of the ma-
trices and that are yet to be estimated. Yet, there is a scale
ambiguity which has to be fixed; otherwise, the Fisher informa-
tion matrix (FIM) would not be invertible. Without loss of gen-
erality, we assume that the scale of the original sources is one,
which means , . Therefore, we fix
the variance of the signals in the first block so that

(24)

Consequently, there are parameters to be esti-
mated; let denote the truncated parameter vector containing
only these parameters.

The th element of the FIM of the mixed signals at any time
instant in the th block is given by [22, p. 134, Theorem 5.1]

(25)

where the partial derivatives are applied element-wise. Now the
whole FIM can be computed numerically by using the rules de-
rived in Appendix C. Since samples of the mixed signals at dif-
ferent time instants are independent, the FIM of the entire data
set is

(26)

Finally, the CRLB of the covariance of any unbiased estimator
of reads as

(27)

The CRLB can be used to derive a Cramér–Rao induced
lower bound (CRIB) of the mean-square angular deviation3

between columns of the mixing matrix and its estimates, as
follows.

Let be the th column of , and be its sample esti-
mate. Let CRLB be the submatrix of which bounds
the mean square error in estimating . The angle between

and is defined through its cosine as

(28)

where , , , and
. Taking the second-order Taylor series

expansion on both sides of (28) and neglecting all higher-order
terms of , and we get

(29)

Therefore

(30)
and consequently

(31)

3Note that the deviation may or may not be interpreted as an angular error of
direction-of-arrival of the signal on the sensor array.
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If is the maximum likelihood estimate of , it holds
asymptotically that . It follows
that the CRIB on the mean-square angle deviation of can
be defined as

(32)

where

(33)

is the projection operator to the orthogonal complement of .
It easily follows that the CRIB is always non-negative.

VIII. ESTIMATING THE NUMBER OF THE SOURCES

In many applications, e.g., in biomedical signal pro-
cessing—EEG in particular—the number of the sources may
not be known in advance. It would be highly desirable to have a
method of estimating the model order. In this paper, we propose
one possible approach—using the MDL [23].

The MDL can be written as a sum of two terms: a log-like-
lihood function of the model achieved at the given data, and
a penalty term that accounts for the model complexity. The
log-likelihood function of the data model for given number of
sources (tensor rank) was derived in Appendix A. The number
of free parameters in the model is . The resultant
MDL criterion is then

(34)

It is believed that minimization of the MDL criterion gives
an asymptotically unbiased estimate of the dimension of the
model, if the number of data in each block grows to infinity.
In practice, it appears that if the signal does not exactly fit the
assumed model (such as speech signals), minimization of the
MDL slightly overestimates the number of the sources.

IX. SIMULATIONS

A. Artificial Data Obeying the Model

Four artificial signals of the length 10 000 partitioned
into epochs (blocks) of equal length were generated as
independent zero mean Gaussian random variables with vari-
ances , where is the index of the epoch and is the
index of the signal. The variances versus and were taken
as variables in Fig. 1. The variances were normalized so that

for all . Note that three of the variances were
set close to zero at some epoch, but it need not be assumed that
some signals are not active, as some other methods require.

The data were mixed in three observed channels via a mixing
matrix with columns , where

.

Fig. 1. Variances of the artificial signals in the ten epochs.

TABLE II
MEAN-SQUARE ANGULAR ERROR OF COLUMNS OF� [dB]

The data were generated repeatedly in 500 independent
trials, mixed together and analyzed by the proposed algorithm.
The outcome of the algorithm was sorted to fit the orders and
the signs of the original signals. Quality of the separation
was measured by the mean-square angular error (MSAE) of
columns of the estimated mixing matrix from their true coun-
terparts. The MSAE of the proposed algorithm, the MSAE of
SOBIUM, and the corresponding CRIB (32) are summarized in
Table II. We note that the performance of UDSEP significantly
(by 2.3–5.7 dB) exceeds the performance of SOBIUM, and it
even exceeds the CRIB in the case of the second and the third
signal. The estimator is thus superefficient.

We believe that the superefficiency is caused by the very small
variance of the original signals in some of the epochs. Since
the variances are estimated as well, and they cannot be nega-
tive, their restricted range is in conflict with the assumed unbi-
asedness of the estimator. The assumption of nonnegativity of
some parameters may also be interpreted as a prior knowledge
about the parameter, which improves the ratability of the pa-
rameters (all of them) in general, but it is not underpinned by
the Cramér–Rao theory.

The hypothesis is confirmed by the following test. All vari-
ances are increased by some value, say , the same for all signals
and epochs. Performance of the algorithms is studied for varying

. With growing the dynamics of variance profiles of the sig-
nals are reduced, and, consequently, the separation accuracy is
lowered. Results are shown in Fig. 2. If the value of exceeds
0.1, the estimation errors of the second and the third column of

follow the CRIB. The estimation of the first and last columns
of tends to follow the bound as well, but for there
are 1%–4% of trials which spoil the plain average angular error.
If these trials are excluded, the coincidence between the CRIB
and the estimation error is very good again.

The estimated matrix was used to build beamformers that
separate the individual sources, described in Section VI. It was
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Fig. 2. Mean-square angular errors in estimating columns of the mixing matrix
� plus corresponding Cramér–Rao induced bound versus the increment � added
to all variances in Fig. 1.

Fig. 3. SIR of the optimum separating beamformers obtained for the true
mixing matrix� (solid, dashed, dot-dashed and dotted line) and those obtained
through the estimated � (circles).

TABLE III
SIR OF THE SEPARATED SIGNALS [dB]

found that the output SIR differs a little from the SIR of the op-
timum beamformer that would be obtained by using the original
(correct) matrix . This is shown in Fig. 3. For each signal, the
periods of the low output SIR correspond to periods where the
input SIR is low as well (cf. Fig. 1). Finally, the overall SIR of
the separated signals obtained by UDSEP and SOBIUM, and
SIR of the optimum beamformer (20) and (23) are presented in
Table III. Again, UDSEP outperforms SOBIUM, and is close to
the performance of the optimum beamformer, which assumes
knowledge of the mixing matrix.

B. Robustness Against Mismodeling

This subsection presents two examples that demonstrate ro-
bustness of the proposed algorithm against exact validity of the

Fig. 4. Average angular error in estimating columns of the mixing matrix
(upper diagram) and SIR of the separated signals (lower diagram) versus the
number of epochs in the incorrectly partitioned signal.

Fig. 5. Average angular error in estimating columns of the mixing matrix
(upper diagram) and signal-to interference and noise (SINR) of the separated
signals (lowed diagram) versus the input SNR, defined as ��� ��� of the
variance of the additive noise.

assumed data model. The data are generated in the same way as
in the previous subsection in 100 independent trials. In the first
experiment, the algorithm is run with tentatively wrong parti-
tioning of the data. The data are partitioned into 5 to 20 seg-
ments. Results are summarized in Fig. 4, which shows the mean
square angular error in estimating the columns of , and also
total SIR obtained by the estimated separating beamformer. We
note that the differences in performance due to the incorrect
number of epochs are surprisingly minor. The second experi-
ment (Fig. 5) shows robustness of the algorithm against an ad-
ditive noise, which is included in the data but not in the assumed
model. Here, the correct partitioning into is used.

C. Crossing Sources (Colinear Factors)

The experiment from the Section IX-A was repeated with the
difference that the first source had a changing position. In par-
ticular, the first column of the DOA matrix was parameter-
ized as again, but the angle was
changing from 0 to . In this interval, crossed the angles of
the other three sources. The result is shown in Fig. 6. It can be
noticed that if lies in vicinity of each of , and , es-
timates of all columns of have an increased variance. On the
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Fig. 6. Average angular error in estimating columns of the mixing matrix
(upper diagram) and SINR of the separated signals (lowed diagram) versus
varying parameter � of the first source. At � � ����, � � 1, 2, 3, the first
column of � is identical to the second, the third, and the fourth column,
respectively.

Fig. 7. Squared angular errors in estimating columns of the mixing matrix for
UDSEP versus varying number of epochs.

Fig. 8. Maximum, median and minimum average angular error in estimating
columns of the mixing matrix for UDSEP (solid lines), and for SOBIUM (dotted
lines) versus varying number of epochs.

other hand, the SIR of the separated signals is good for the other
two sources, that are not crossed.

D. Acoustic (Speech) Data Separation

In this subsection, the set of 16 speech utterances of the length
8.375 s sampled at 16 kHz, normalized to have zero mean and

Fig. 9. SIR of the separated signals for UDSEP (upper diagram) and SOBIUM
(lower diagram).

unit variance, are taken as the original sources . The 9 16
mixing matrix is defined as by its columns of the form

, where are auxiliary an-
gles , . Note that all columns of
have the same norm. The structure of the matrix is not used
for the separation.4 The SIR of the original signals in the mix-
ture vary between 10 and 20 dB. The mixture is
processed by UDSEP with blocks, where was changing
between 30 and 270. This means that the length of each block
was from 279 to 31 ms. Angular errors of columns of the mixing
matrix for UDSEP are plotted in Fig. 7. We note that for
190, 210 and 250, the algorithm has converged to a wrong local
minimum. Three of the sixteen sources were not separated, ac-
curacy of the other sources was not affected. A possible remedy
to this problem is to let the algorithm run from several initial
point, and select the result that leads the best fit of the tensor
for the given rank. (It was not implemented, yet.) A compar-
ison with performance of SOBIUM is presented in Fig. 8, where
the minimum, maximum, and median angular error is shown for
both of the methods. It is shown that UDSEP performs, indeed,
much better. The same conclusion follows from comparison of
the SIR of the separated signals, presented in Fig. 9. The algo-
rithm does not seem to be very sensitive to the selection of the

4We have also tried to generate� at random; Separation results were usually
similar. The fixed� is used to avoid random large errors.
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number of the epochs. The optimum is achieved for approxi-
mately 150 epochs, i.e., the length of each one was cca 56 ms.

Finally, we have studied usefulness of the MDL criterion, pre-
sented in Section VII. It appeared to overestimate the number
of the sources. For example, for , it monotonically de-
creased with increasing expected number of sources until

, and is not the global minimum. It was observed,
however, that if the number of the sources is overestimated, most
of the truly existing sources are separated with a good accu-
racy and have larger estimated separation SIR than the fictitious
(not really existing) sources. Design of a reliable method of es-
timating the number of the sources may be subject of a further
research.

The mixture, the separated signals, and p-code of the sepa-
rating procedure were posted on the Internet [26].

X. CONCLUSION

We have presented a novel blind algorithm to separate
underdetermined instantaneous mixtures of nonstationary
signals. The algorithm is based on a specifically weighted
tensor decomposition of the set of covariance matrices of the
received signal (mixture) in partitioning the signal in epochs.
The tensor decomposition weighting is tailored to the signal
model which assumes that the original (to be separated) signals
are stationary inside the epochs but have variances which
are different epoch to epoch. Performance of the algorithm
significantly exceeds that of the general tensor decomposition
method in SOBIUM. In simulations, the algorithm exceeds the
corresponding Cramér–Rao bound, if variances of some of the
signals at some of the epochs are close to zero. Experiments
with separation of speech signals show that the algorithm
performs very well, even when the signals do not obey the as-
sumed model. It largely outperforms SOBIUM and is not much
sensitive to the chosen length of the blocks. The algorithm may
have potential applications in biomedical signal processing and
in speech processing.

APPENDIX A

Derivation of the weighted criterion (8).
The criterion is derived from the maximum likelihood prin-

ciple. The joint likelihood function of the data is

where is the th dimensional sample of th block of the
mixture, and is the number of samples in each block. The
log likelihood function is then

(35)
where

(36)

The maximum likelihood estimate of a vector parameter is
obtained by inserting the model covariance in place of
the theoretical matrices in (35), and minimizing the resultant
expression with respect to .

In place of the true log-likelihood function, one can minimize
its suitable approximation, obtained by a second order Taylor
series expansion as a function of in a neighborhood of

. Neglecting the third and higher order terms in
it holds

and

Consequently,

(37)
This concludes the proof that the minimization of (8) is approx-
imately equivalent to computation of the maximum likelihood
estimate of the parameter .

APPENDIX B

This Appendix presents details of computation of the gradient
and the Hessian of the weighted criterion (9). (Derivatives of
the barrier function in (10) are simpler and are omitted to save
space.)

(38)

where is the th element of and is the
th element of for

and . The gradient and the Hessian of the crite-
rion have the elements

(39)

for . It can be shown that
the first term on the right-hand side of (39) represents an ele-
ment of a matrix which is always positive definite (or at least
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positive semidefinite), provided that the matrices are pos-
itive definite. The latter part of the Hessian might be indefi-
nite, in general. Moreover, the latter term is negligible if the
fitting error is small. Note that for convergence of the
Gauss-Newton algorithm or L-M algorithm it is desired that the
Hessian is positive definite. Therefore, we shall neglect the latter
term in the rest of the paper. Since

(40)

its derivatives with respect to elements of , i.e., and ,
, , and read

(41)

(42)

Replacing in (39) according to (41) and (42) we get, after some
simplifications,

(43)

(44)

(45)

where

(46)

(47)

(48)

We can summarize the results in matrix form as

(49)

where

...
... (50)

...
... (51)

...
... (52)

(53)

(54)

(55)

is the Hadamard (elementwise) product and and are
matrices

(56)

(57)

(58)

(59)

Note that in (49) and (55) is block diagonal and therefore
it is convenient to use a lemma for inversion of partitioned ma-
trices to reduce memory requirements and computational time
of the algorithm.

APPENDIX C

Straightforward computations of the partial derivatives in
(25) by the elements of give, respectively,

(60)

(61)

(62)

where , , and .
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